
Efficient and Cost-Effective HPC on
the Cloud

FlexScience 2025

Aditya Bhosale, Laxmikant Kale, Sara Kokkila-Schumacher

1

Introduction

● Increasing availability and adoption
of HPC cloud resources over the past
few years

● Consumption of HPC cloud
resources is projected to grow from
$5bn in 2021 to $14bn in 2027

● The demand for HPC cloud
resources is higher than ever with the
increasing number of AI workloads
running on cloud

Source: Hyperion Research, 2023 -
https://www.ibm.com/downloads/cas/RGKYOOKB#:~:text=HPC%20in%20the%20cloud%20has,resources%20more%20warmly%20than%20others. 2

● Cloud providers make excess
capacity available as spot compute
at deep discounts

● Spot vs on-demand price for
c5.xlarge AWS instance shows more
than 50% discount over the past
week

● These instances are preemptible
with a 1-2 minute warning if there is
a surge in demand

Motivation

3

● Spot instances ideal for stateless, loosely coupled, fault-tolerant workloads
● HPC applications are

○ Stateful
○ Tightly coupled
○ Not inherently fault-tolerant

● In this paper we present
○ Charm++ as a programming model for running HPC applications on spot instances with

minimal programmer effort and without the need for a shared filesystem
○ CharmCloudManager, a Python utility to automatically monitor and run Charm++ applications

on AWS EC2 spot instances

Motivation

4

● Charm++ is an asynchronous message-driven parallel programming model
● Users express computation in terms of objects (chares) that communicate via

remote method invocations
● Chares are migratable across processors
● Charm++ natively supports -

○ Dynamic load balancing
○ Dynamic rescaling

Background

5

Rescaling in Charm++

Shrinking from 4 to 3 PEs

Expanding from 3 to 4 PEs

Shrinking from 4 to 3 PEs Expanding from 3 to 4 PEs

6

● When shrinking -
○ Migrate chares out of the processors to be removed
○ Checkpoint application state in Linux shared memory
○ Restart with reduced number of processors

● When expanding
○ Checkpoint application state in Linux shared memory
○ Restart with increased number of processors
○ Load balance to distribute workload evenly

Rescaling in Charm++

7

CharmCloudManager - a Python utility to run Charm++ applications on EC2
spot instances

● Create a fleet of EC2 spot and on-demand instances
● Monitor instance metadata for interruption notice
● Use the 2 minute interruption warning to shrink the application to remove the

interrupted instance
● After instance is replaced, expand to include the new instance

Methodology

8

CharmCloudManager

9

● We used a cluster placement group in a single region, availability zone and
subnet to maximize network performance

● Need at least 1 vCPU in on-demand capacity to run the main node of the
Charm++ application

CharmCloudManager

10

Strong scaling performance

● We used a 2D Stencil benchmark
for all experiments

● Instance type - c5.xlarge
● Each instance has 4 vCPUs

Performance

11

The overhead of spot interruptions can be classified as follows

● Overhead of rescaling
○ Shrink overhead when removing interrupted instances
○ Expand overhead when adding new instances

● Overhead due to drop in capacity when application shrinks

Performance

12

Rescaling overhead

Shrink overhead when instances interrupted Expand overhead when instances replaced

Contribution of each step involved in rescaling from 16 instances to the total overhead

13

Rescaling overhead with varying data
size

● The cost of in-memory checkpointing
is as small as 0.046s for 2GB

● The cost of data movement during
load balancing sharply increases
with increasing data size

Rescaling overhead

14

Comparison of the two sources of
overhead using 16 instances

● The rescaling overhead dominates
for smaller number of instances
being interrupted

● As more instances are interrupted,
the cost of drop in capacity
dominates

Overhead comparison

15

● 1 on-demand and 15 spot instances
● Even with a large number of

instances being interrupted, the run
using spot instances costs 50.71%
lower than the all on-demand run

Cost comparison

Instances
Interrupted

On-Demand
Cost (USD)

Spot
Cost
(USD)

Cost
Savings

0 0.43 0.17 59.78%

1 0.43 0.19 55.52%

2 0.43 0.20 53.93%

4 0.43 0.20 52.36%

8 0.43 0.21 50.71%

16

● Reducing the overhead of interruptions
○ Using EFA for more efficient communication can reduce the contribution of load balancing to

the rescaling overhead
○ Using capacity rebalancing to reduce overhead due to drop in capacity at the cost of

potentially more frequent rescaling

● Extending rescaling support to GPUs
○ Additional cost of data-movement between host and device and increase overhead
○ Using GPUDirect RDMA with EFA will be critical to manage rescaling overhead

Future work

17

