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Introduction

● Increasing availability and adoption 
of HPC cloud resources over the past 
few years

● Consumption of HPC cloud 
resources is projected to grow from 
$5bn in 2021 to $14bn in 2027

● The demand for HPC cloud 
resources is higher than ever with the 
increasing number of AI workloads 
running on cloud

Source: Hyperion Research, 2023 - 
https://www.ibm.com/downloads/cas/RGKYOOKB#:~:text=HPC%20in%20the%20cloud%20has,resources%20more%20warmly%20than%20others. 2



● Cloud providers make excess 
capacity available as spot compute 
at deep discounts

● Spot vs on-demand price for 
c5.xlarge AWS instance shows more 
than 50% discount over the past 
week

● These instances are preemptible 
with a 1-2 minute warning if there is 
a surge in demand

Motivation
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● Spot instances ideal for stateless, loosely coupled, fault-tolerant workloads
● HPC applications are

○ Stateful
○ Tightly coupled
○ Not inherently fault-tolerant

● In this paper we present
○ Charm++ as a programming model for running HPC applications on spot instances with 

minimal programmer effort and without the need for a shared filesystem
○ CharmCloudManager, a Python utility to automatically monitor and run Charm++ applications 

on AWS EC2 spot instances

Motivation
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● Charm++ is an asynchronous message-driven parallel programming model
● Users express computation in terms of objects (chares) that communicate via 

remote method invocations
● Chares are migratable across processors
● Charm++ natively supports -

○ Dynamic load balancing
○ Dynamic rescaling

Background
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Rescaling in Charm++

Shrinking from 4 to 3 PEs

Expanding from 3 to 4 PEs

Shrinking from 4 to 3 PEs Expanding from 3 to 4 PEs
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● When shrinking -
○ Migrate chares out of the processors to be removed
○ Checkpoint application state in Linux shared memory
○ Restart with reduced number of processors

● When expanding
○ Checkpoint application state in Linux shared memory
○ Restart with increased number of processors
○ Load balance to distribute workload evenly

Rescaling in Charm++
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CharmCloudManager - a Python utility to run Charm++ applications on EC2 
spot instances

● Create a fleet of EC2 spot and on-demand instances
● Monitor instance metadata for interruption notice
● Use the 2 minute interruption warning to shrink the application to remove the 

interrupted instance
● After instance is replaced, expand to include the new instance

Methodology
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CharmCloudManager
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● We used a cluster placement group in a single region, availability zone and 
subnet to maximize network performance

● Need at least 1 vCPU in on-demand capacity to run the main node of the 
Charm++ application

CharmCloudManager
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Strong scaling performance

● We used a 2D Stencil benchmark 
for all experiments

● Instance type - c5.xlarge
● Each instance has 4 vCPUs

Performance
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The overhead of spot interruptions can be classified as follows

● Overhead of rescaling
○ Shrink overhead when removing interrupted instances
○ Expand overhead when adding new instances

● Overhead due to drop in capacity when application shrinks

Performance
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Rescaling overhead

Shrink overhead when instances interrupted Expand overhead when instances replaced

Contribution of each step involved in rescaling from 16 instances to the total overhead
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Rescaling overhead with varying data 
size

● The cost of in-memory checkpointing 
is as small as 0.046s for 2GB

● The cost of data movement during 
load balancing sharply increases 
with increasing data size

Rescaling overhead
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Comparison of the two sources of 
overhead using 16 instances

● The rescaling overhead dominates 
for smaller number of instances 
being interrupted

● As more instances are interrupted, 
the cost of drop in capacity 
dominates

Overhead comparison
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● 1 on-demand and 15 spot instances
● Even with a large number of 

instances being interrupted, the run 
using spot instances costs 50.71% 
lower than the all on-demand run

Cost comparison

Instances 
Interrupted

On-Demand 
Cost (USD)

Spot 
Cost 
(USD)

Cost 
Savings

0 0.43 0.17 59.78%

1 0.43 0.19 55.52%

2 0.43 0.20 53.93%

4 0.43 0.20 52.36%

8 0.43 0.21 50.71%
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● Reducing the overhead of interruptions
○ Using EFA for more efficient communication can reduce the contribution of load balancing to 

the rescaling overhead
○ Using capacity rebalancing to reduce overhead due to drop in capacity at the cost of 

potentially more frequent rescaling

● Extending rescaling support to GPUs
○ Additional cost of data-movement between host and device and increase overhead
○ Using GPUDirect RDMA with EFA will be critical to manage rescaling overhead

Future work

17


