Can Large Language Models Predict Parallel Code
Performance?

Gregory Bolet!, Giorgis Georgakoudis?, Harshitha Menon?,
Konstantinos Parasyris?, Niranjan Hasabnis3, Hayden Estes’,
Kirk W. Cameron’, Gal Oren#

HPDC 2025 — Al4Sys Workshop
July 20, 2025

Virginia Tech
2Lawrence Livermore National Laboratory (LLNL)
3Code Metal Al
4Technion & Stanford

LLNL-CFPRES-2008561 VIRGINIA | M Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC T EC H .

National Laboratory

A confluence of trends motivated this work

1) Normalization of LLM-based
“assistants” in software development

9Q+ D x

S

Edit with Copilot

CHAT

@ Add Context...

Edit files in your workspace in agent mo

Ag.. ¥ Claude Somn..v £ 0 B v

J CURSOR

V' Windsurf
tabnine

2) circa Aug 2024, not many Performance Analysis (PA) sub-
fields using LLMs for GPU performance prediction

Compiler Optimization Log Parsing % Code Transpilation
7

‘%’ 9 Debugging Assistants Code Optimization i

HPC Advising Tools

3) Existing works assumed hardware access for GPU profiling

Profile 1
Profile 2 Unoptimized
. OR &g

Profile N L

LLM optim.
suggestions

=D

Profile
Performance

Fine-tuned
LLM

Idea: Can LLMs predict GPU code performance
without the need for hardware/profiling?

L Lawrence Livermore National Laboratory
LLNL-CFPRES-2008561

NS

National Nuclear Security Administration

2

What would be a “simple” PA task we could ask of the LLMs?

7 = Roofline Model + #
Arithmetic Intensity Classification

L Lawrence Livermore National Laboratory N AY S’gegg
LLLLLLLLLLL 2008561 etoons ntear seceroy Seamrdcietn

The Roofline Model guides code optimization

a =— Max Bandwidth (GB/s)
b — Peak Performance (GFLOP/s)

y = min(za, b)

Balance Point

0 « | GPU Peak Perf.

O .\@ %
Y

o & /0

L Q?

sl S/ *

el & o | ®

5102

L9 (BB) | (CB)

O Bandwidth-bound Compute-bound

o < I >

-
Arithmetic Intensity (FLOP/Byte)

Optimizations if (code == BB)
« cudaMemCpy only necessary data
» Datal/cache re-use via smart access pattern
» Sparsity / strided-access reduction

Optimizations if (code == CB)
 Intrinsics (e.g: Fused-Multiply-Add -- FMA)
» Switching precisions / datatypes
* Loop unrolling
» Avoid implicit operations (e.g: division)

Idea: What Roofline metrics can we get
LLMs to predict for us?

0000000

o
\/)
NYSE,

4

Predicting exact Roofline metrics with LLMs is hard

* Roofline Regression Task:

Get an LLM to predict Arithmetic Intensity (Al) (FLOP/Byte) Proven LLM
Classification Tasks
or Performance (FLOP/s) from source code?
_ sentiment
X LLMs are not good at regression (yet...) —) analysis

* Roofline Classification Task:

spam
Get an LLM to classify Arithmetic Intensity from source code? detection

LLMs can do classification

Key Question: How well can an LLM classify Roofline Al of GPU codes?

L Lawrence Livermore National Laboratory N A‘ ng&‘;&
=)
LLLLLLLLLLL - Netonal Nuciear Securty adminisiration

0000000

Arithmetic Intensity (Al) Classification Research Questions

RQ1 (Baseline Roofline Classification)

®* (Can LLMs classify Al well when given the hardware roofline, and arithmetic intensity values?
RQ2 (Zero-Shot Classification)

* Can LLMs classify Al well when given source code, execution specs, and minimal instructions?

RQ3 (Few-Shot Classification)

* (Can LLMs classify Al well when given source code, execution specs, and a few real examples
of codes with their expected classifications?

RQ4 (Fine-Tuned Classification)
® (Can we fine-tune LLMs for roofline Al classification?
Roofline Classification:

- LLM

Source QOZ Exec [“bandwidth-bound”
Code Params B oa
Kernel ' or oo/ \aa
| | Launch > GPU . “compute-bound” =
< Params Specs

L Lawrence Livermore National Laboratory N A‘ S{{‘o‘% 6
b e)

LLNL-CFPRES-2008561

SoTA LLMs understand Arithmetic Intensity pretty well (RQ1)

Roofline SpeCS: R Model Name Reasoning RQ1 Acc. RQ1 CoT Acc.
2 $GPU Peak Perf ini-hi
% §\b eak Perf. 120 BB questions 03-mini-high v 100 100
T | o > 120 CB questions o i - -
| " @ Random Point Random Rooflines o3-mini / 100 100
&) gpt-4.5-preview — -
: . 01-mini-2024-09-12 v 100 100
Al (FLOP/Byte) / gemini-2.0-flash-001 91.25 92.50
gpt-40-2024-11-20 91.25 96.25
RQ1 CoT Prompting Template gpt_4°_m%n% 2000 100
gpt-40-mini-2024-07-18 90.00 100
2, 4, 8-shot examples o
w/ optional (chain-of-thought) CoT Findings:
(redacted) All models have a reasonably-good
Question: Given a GPU having a global memory with a max bandwidth un d erstan d | N g Of AI
of 99.9 GB/s and a peak performance of 73.45 GFLOP/s, if a program o .
executed with an Arithmetic Intensity of 1.55 FLOP/Byte and a perfor- ReaSOn | ng mOdels have gOOd
mance of 32.8 GFLOP/s, does the roofline model consider the program pred |Ct|0n accura Cy W/ and W/ Out COT
as compute-bound or bandwidth-bound?

« 2 prompt examples is sufficient

L Lawrence Livermore National Laboratory N A‘ S{{Sg‘
LLNL-CFPRES-2008561 el e)

GPU Program Source Code Dataset Creation

O zjin-Icf

Y7 248 stars
¥ 3 Branches

https://qithub.com/zjin-Icf/HeCBench

/ HeCBench

Y 89 forks <® 4 watching
© 0Tags -~ Activity

@ Public repository

170 CUDA Programs
170 OpenMP Programs

Build Profile

Dataset

Collected Attributes:
* Program Name
» Target Kernel Name
» Source Code
» Hardware Specs Info
» Executable Args
» Launch Grid / Block Size
« Arithmetic Intensity (Al) Values
« Al Classification (CB/BB)

Data Collection Design Decisions:

1) Sampled metrics -

my_header.h

on NVIDIA RTX .

3080 GPU

iy

2) Concatenate all

source files for
prompting

/% source code here %/

my_cuda_kernels.cu

/% source code here x/

main.cu

/% source code here %/

3) Profiled only 1st execution
of 1 kernel per program

9 lulesh-cuda-[applyMaterialPropertiesForElems]-report.ncu-rep x

Result Size Time Cycles GPU
Current 698 -appl~ V - (8192,1,1)x(256,1,1) 2.63ms 3,784,175 0 - NVIDIA GeForce

Summary Details Source Context Comments Raw Session

3 @ This table shows all results in the report. Double-click a result to see detailed metrics. Doublg

ID 0 1
Estimated Speedup 5.62 5.50
Function Name applyMaterialPropertiesForElems ...pertiesForElems
Demangled Name applyMaterialPropertiesForElems(co... flapplyMaterialPro...

Duration (5.2544e+06) SPFLO P, DPFLO p, 263

Runtime Improvement (292134) 014
Compute Throughput INTOP Al values 86.20
Memory Throughput 4/ 10.51
Registers 63
Grid Size 8192, 1, 1
Block Size

Language

4) Balanced dataset w.r.t:
token counts, language, Al class

—
——

CUDA A

OMP -

0 2000 4000 6000 8000
Number of Tokens

I Bandwidth-Bound [Compute-Bound

L Lawrence Livermore National Laboratory

LLNL-CFPRES-2008561

\ / G

LA
N A S“‘ﬂ
National Nuciear Securlty Adminisiration

https://github.com/zjin-lcf/HeCBench

Reasoning-based LLMs are the
best at predicting Al (RQ2)

Hardware
Roofline Specs
&\

N £

Execution
Specs
_AL

RQ2 Prompting Template (see paper for full prompt)

[omitted context-setting beginning of prompt]

Classify the [language] kernel called [kernel name] as Bandwidth or
Compute bound. The system it will execute on is a [GPU model] with:

e peak single-precision performance of [X] GFLOP/s
e peak double-precision performance of [X] GFLOP/s
e peak integer performance of [X] GINTOP/s

e max bandwidth of [X] GB/s

The block and grid sizes of the invoked kernel are (X,Y,Z) and (X.Y,Z),
respectively. The executable running this kernel is launched with the
following command-line arguments: [arg1 arg2 arg3].

. | Below is the source code of the requested [language] kernel:

[concatenated source code files]

Input/Output

Model Name Reasoning RQ2 Acc.
Cost (1M tokens)
03-mini-high v $1.1/$4.4 64.12
ol v $15/ $60 64.12
03-mini v $1.1/%4.4 62.06
gpt-4.5-preview $75 / $150 59.71
01-mini-2024-09-12 v $1.1/ %44 59.64
gemini-2.0-flash-001 $0.1/ $0.4 55.59
gpt-40-2024-11-20 $2.5/$10 52.06
gpt-40-mini $0.15 / $0.6 50.59
gpt-40-mini-2024-07-18 $0.15 / $0.6 50.29
Findings:

« Non-reasoning (i.e.: cheaper) models are marginally

better than a coinflip at predicting the correct Al

class

« Similar accuracy for both CUDA/OMP codes
 Still room for improvement with 03-mini-high

achieving highest accuracy of 64%

L Lawrence Livermore National Laboratory

LLNL-CFPRES-2008561

\ 4 jo
&8
NYSE,

Real code examples don’t improve

+ O
()] f 2 _ g o o
0N = [omitted context-setting beginning of prompt] ()
S Q Provide only one word as your response, chosen from the set: a Cc u ra Cy by m u C h RQ3
= % < [’Compute’, ’Bandwidth’].
O
=) zg Examples: Model Name Reasoning ROQ2 Acc. RQ3 Acc.
‘.(T) (b} Example 1:
c O
- O Ce s
O hand-tuned CB CUDA/OMP 03-mini-high v 64.12 63.53 §
8 example program o1 v/ 64.12 61.47 §
o s
~ Responze: Compnle 03-mini v 62.06 6294 ¥
Example 2: gpt-4.5-preview 59.71 60.88 %
01-mini-2024-09-12 v 59.64 56.47
hand-tuned BB CUDA/OMP ey —— poren i :
(7)) geminli-Z.9-t1lash- 5 5
& example program
O gpt-40-2024-11-20 52.06 53.24 %
(% Response: Bandwidth t—do-mini 50.59 5935 t
gpt-40- 5 .
e ()] Now, analyze the following source codes for the requested kernel of the ..
(;5 C \.| specified hardware. gpt-40-mini-2024-07-18 50.29 52.06 %
o) q_: Classify the [language] kernel called [kernel name] as Bandwidth or
E 8 [Compute bound. The system it will execute on is a [GPU model] with: . .]
T o peak single-precision performance of [X] GFLOP/s FI n d IN g S.
e peak double-precision performance of [X] GFLOP/s L .
- peak integer performance of [X] GINTOP/s Similar results to RQ2, suffers from higher query costs
G e max bandwidth of [X] GB/s . :
cC» The block and grid sizes of the invoked kernel are (X,Y,Z) and (X,Y,Z), d ue to In Creased p rom pt Size
C_) 8 respec'tively. The exef:utable running this kernel is launched with the ° N on-reason | ng models SI |g htly |m prove accu racy (by 1 -
45' o following command-line arguments: [arg1 arg2 arg3]. .
owm Below is the source code of the requested [language] kernel: 2 %) Whe N g Iven re al Code exam p I es
) [concatenated source code files] . .
« Accuracy was similar for both CUDA/OMP codes

FEX

Lawrence Livermore National Laboratory \/ o8
LLNL-CFPRES-2008561 NMA.Mm‘E‘ 10

We need more data to fine-tune LLMs to predict Al (RQ4)

Approach:

* Fine-tuned gpt-40-mini using an 80/20 train/test split of our 340-sample dataset (272/68 split)
« Used prompt template from RQ3 for training/testing
« Trained for 2 epochs (~$400 USD to train)

* Queried trained model 3x on each test sample

Fine-tuned LLM (1 epoch)

Predicted Class

Fine-tuned LLM (2 epoch)

Findings:

Predicted Class

CB BB CB BB
é 0
G| CB| 2451% | 2549% &|cB 50 % 0.00 %
O O
g o)
2 | BB | 20.10% 29.90 % 2| BB 50 % 0.00 %

94% total accuracy

50% total accuracy

Fine-tuning causes model
responses to be constant
No response variation
across the 3 repeated
qgueries

Not enough data to
thoroughly train model

0000000

NYSE,
INA'—>2 1

Main Conclusions + Takeaways

 SOTA LLMs do understand the Roofline Model for GPU performance analysis

« SOTA LLMs can predict parallel code performance — when limited to
classifying Arithmetic Intensity (Al) of CUDA and OpenMP programs

« Reasoning-equipped LLMs (e.g.: 03-mini-high) offer significantly better
classification accuracy when compared to non-reasoning LLMs

* Reasoning-equipped LLMs don’t need real code examples in their prompts to
help them provide better classifications (can save money on input tokens)

* Fine-tuning an LLM for better Al classification accuracy is going to need more
data and money

L Lawrence Livermore National Laboratory N A‘ S&g‘
LLLLLLLLLLL -2008561 National Nuciear Securlty Adminisiration

12

Major Shortcomings + Future Work

« Small dataset size
« Scraped source codes include all files
 Linear/single-query approach

We currently have some success in applying
Question Decomposition to estimate FLOPs

Arithmetic Intensity
(FLOP/Byte) Estimate

FLOP Estimate

What if the LLMs could
estimate these values for us?

Bytes
Read/Written
Estimate

Empirical FLOP

LLM-Estimated

<D

Target Name Count FLOP Count o2
resize-cuda 16779307 16777216 0.012 %
zerocopy-cuda 1050389 1048576 0.17 %
iso2dfd-cuda 54419825 53196468 2.24 %
nlll-cuda 6006 6273 4.44 %
backprop-cuda 3080240 3080192 0.001 %

L Lawrence Livermore National Laboratory
LLNL-CFPRES-2008561

[H
‘0.8
NV SES 13

Questions &

Slides + Paper
+ Poster

Lawrence Livermore National Laborator 73
L g NS4

LLNL-CFPRES-2008561

Thank You &

Lawrence Livermore National Laboratory \ / o8
LLNL-CFPRES-2008561 NAWM"‘ 15

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

