
LLNL-CFPRES-2008561
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Can Large Language Models Predict Parallel Code
Performance?

Gregory Bolet1, Giorgis Georgakoudis2, Harshitha Menon2,
Konstantinos Parasyris2, Niranjan Hasabnis3, Hayden Estes1,

Kirk W. Cameron1, Gal Oren4

HPDC 2025 – AI4Sys Workshop
July 20, 2025

1Virginia Tech
2Lawrence Livermore National Laboratory (LLNL)

3Code Metal AI
4Technion & Stanford

LLNL-CFPRES-2008561

A confluence of trends motivated this work
2) circa Aug 2024, not many Performance Analysis (PA) sub-

fields using LLMs for GPU performance prediction

Compiler Optimization Code Transpilation

Debugging Assistants

Log Parsing

HPC Advising Tools Code Optimization

2

Idea: Can LLMs predict GPU code performance
without the need for hardware/profiling?

1) Normalization of LLM-based
“assistants” in software development

Unoptimized
Code Profile

Performance

LLM optim.
suggestions

Update
Code

3) Existing works assumed hardware access for GPU profiling

Profile 1

Profile 2

Profile N

...

Fine-tuned
LLM

OR

LLNL-CFPRES-2008561

What would be a “simple” PA task we could ask of the LLMs?

3

🌈 🌟 Roofline Model 🌟 🌈
Arithmetic Intensity Classification

🤔

LLNL-CFPRES-2008561

The Roofline Model guides code optimization

4

Optimizations if (code == CB)
• Intrinsics (e.g: Fused-Multiply-Add -- FMA)
• Switching precisions / datatypes
• Loop unrolling
• Avoid implicit operations (e.g: division)

Optimizations if (code == BB)
• cudaMemCpy only necessary data
• Data/cache re-use via smart access pattern
• Sparsity / strided-access reduction

Idea: What Roofline metrics can we get
LLMs to predict for us?

Pe
rfo

rm
an

ce
 (F

LO
P/

s)

Arithmetic Intensity (FLOP/Byte)

GPU Peak Perf.

Ban
dw

idt
h P

erf
. L

im
it

(BB)
Bandwidth-bound

(CB)
Compute-bound

Balance Point

LLNL-CFPRES-2008561

• Roofline Classification Task:

Get an LLM to classify Arithmetic Intensity from source code?

Predicting exact Roofline metrics with LLMs is hard

5

• Roofline Regression Task:

Get an LLM to predict Arithmetic Intensity (AI) (FLOP/Byte)

or Performance (FLOP/s) from source code?

❌ LLMs are not good at regression (yet…)

✅ LLMs can do classification

sentiment
analysis

spam
detection

Proven LLM
Classification Tasks

Key Question: How well can an LLM classify Roofline AI of GPU codes?

LLNL-CFPRES-2008561

Arithmetic Intensity (AI) Classification Research Questions

6

RQ1 (Baseline Roofline Classification)
• Can LLMs classify AI well when given the hardware roofline, and arithmetic intensity values?

RQ2 (Zero-Shot Classification)
• Can LLMs classify AI well when given source code, execution specs, and minimal instructions?

RQ3 (Few-Shot Classification)
• Can LLMs classify AI well when given source code, execution specs, and a few real examples

of codes with their expected classifications?
RQ4 (Fine-Tuned Classification)
• Can we fine-tune LLMs for roofline AI classification?

Source
Code Kernel

Launch
Params

Exec
Params

GPU
Specs

“bandwidth-bound”
or

“compute-bound”

Roofline Classification:
LLM

LLNL-CFPRES-2008561

SoTA LLMs understand Arithmetic Intensity pretty well (RQ1)

7

Findings:
• All models have a reasonably-good

understanding of AI
• Reasoning models have good

prediction accuracy w/ and w/out CoT
• 2 prompt examples is sufficient

Pe
rf.

 (F
LO

P/
s)

AI (FLOP/Byte)

GPU Peak Perf.

Max
 B

an
dw

idt
h

Random Point

Roofline Specs:

RQ1 CoT Prompting Template

2, 4, 8-shot examples
w/ optional (chain-of-thought) CoT

(redacted)

120 BB questions
120 CB questions
Random Rooflines

LLNL-CFPRES-2008561

GPU Program Source Code Dataset Creation

8

ht
tp
s:
//g
ith
ub
.c
om
/z
jin
-lc
f/H
eC
Be
nc
h

170 CUDA Programs
170 OpenMP Programs

Build Profile Dataset

Collected Attributes:
• Program Name
• Target Kernel Name
• Source Code
• Hardware Specs Info
• Executable Args
• Launch Grid / Block Size
• Arithmetic Intensity (AI) Values
• AI Classification (CB/BB)

Data Collection Design Decisions:

1) Sampled metrics
on NVIDIA RTX
3080 GPU

2) Concatenate all
source files for
prompting

4) Balanced dataset w.r.t:
token counts, language, AI class

3) Profiled only 1st execution
of 1 kernel per program

SPFLOP, DPFLOP,
INTOP AI values

https://github.com/zjin-lcf/HeCBench

LLNL-CFPRES-2008561

Reasoning-based LLMs are the
best at predicting AI (RQ2)

9

Findings:
• Non-reasoning (i.e.: cheaper) models are marginally

better than a coinflip at predicting the correct AI
class

• Similar accuracy for both CUDA/OMP codes
• Still room for improvement with o3-mini-high

achieving highest accuracy of 64%

[omitted context-setting beginning of prompt]

RQ2 Prompting Template (see paper for full prompt)

H
ar

dw
ar

e
R

oo
fli

ne
 S

pe
cs

Ex
ec

ut
io

n
Sp

ec
s

LLNL-CFPRES-2008561

Real code examples don’t improve
accuracy by much (RQ3)

10

Findings:
• Similar results to RQ2, suffers from higher query costs

due to increased prompt size
• Non-reasoning models slightly improve accuracy (by 1-

2%) when given real code examples
• Accuracy was similar for both CUDA/OMP codes

[omitted context-setting beginning of prompt]

RQ3 Prompting Template (see paper for full prompt)
H

ar
dw

ar
e

R
oo

fli
ne

 S
pe

cs
In

st
ru

ct
io

ns
 +

2

re
al

 c
od

e
ex

am
pl

es
Ex

ec
ut

io
n

Sp
ec

s

hand-tuned CB CUDA/OMP
example program

hand-tuned BB CUDA/OMP
example program

LLNL-CFPRES-2008561

We need more data to fine-tune LLMs to predict AI (RQ4)

11

Approach:
• Fine-tuned gpt-4o-mini using an 80/20 train/test split of our 340-sample dataset (272/68 split)
• Used prompt template from RQ3 for training/testing
• Trained for 2 epochs (~$400 USD to train)
• Queried trained model 3x on each test sample

54% total accuracy

Findings:
• Fine-tuning causes model

responses to be constant
• No response variation

across the 3 repeated
queries

• Not enough data to
thoroughly train model

Predicted Class

CB BB

Tr
ue

 C
la

ss CB 24.51 % 25.49 %

BB 20.10 % 29.90 %

Fine-tuned LLM (1 epoch)

Predicted Class

CB BB

Tr
ue

 C
la

ss CB 50 % 0.00 %

BB 50 % 0.00 %

Fine-tuned LLM (2 epoch)

50% total accuracy

LLNL-CFPRES-2008561

Main Conclusions + Takeaways

12

• SoTA LLMs do understand the Roofline Model for GPU performance analysis

• SoTA LLMs can predict parallel code performance – when limited to
classifying Arithmetic Intensity (AI) of CUDA and OpenMP programs

• Reasoning-equipped LLMs (e.g.: o3-mini-high) offer significantly better
classification accuracy when compared to non-reasoning LLMs

• Reasoning-equipped LLMs don’t need real code examples in their prompts to
help them provide better classifications (can save money on input tokens)

• Fine-tuning an LLM for better AI classification accuracy is going to need more
data and money

LLNL-CFPRES-2008561

Major Shortcomings + Future Work
• Small dataset size
• Scraped source codes include all files
• Linear/single-query approach

13

Arithmetic Intensity
(FLOP/Byte) Estimate

FLOP Estimate
Bytes

Read/Written
Estimate

What if the LLMs could
estimate these values for us?

🧐

Target Name Empirical FLOP
Count

LLM-Estimated
FLOP Count % Diff

resize-cuda 16779307 16777216 0.012 %

zerocopy-cuda 1050389 1048576 0.17 %

iso2dfd-cuda 54419825 53196468 2.24 %

nlll-cuda 6006 6273 4.44 %

backprop-cuda 3080240 3080192 0.001 %

We currently have some success in applying
Question Decomposition to estimate FLOPs

Source
Code

LLM task 1

LLM task 2

LLM task 3

FLOP
Estimate

LLNL-CFPRES-2008561

🙋 Questions 🙋

14

Slides + Paper
+ Poster

Available Here

LLNL-CFPRES-2008561

Thank You 😊

15

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

