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A confluence of trends motivated this work
2) circa Aug 2024, not many Performance Analysis (PA) sub-

fields using LLMs for GPU performance prediction

Compiler Optimization Code Transpilation

Debugging Assistants

Log Parsing

HPC Advising Tools Code Optimization
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Idea: Can LLMs predict GPU code performance 
without the need for hardware/profiling?

1) Normalization of LLM-based 
“assistants” in software development
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Performance

LLM optim. 
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3) Existing works assumed hardware access for GPU profiling
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What would be a “simple” PA task we could ask of the LLMs?
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🌈 🌟 Roofline Model 🌟 🌈
Arithmetic Intensity Classification

🤔
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The Roofline Model guides code optimization
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Optimizations if (code == CB)
• Intrinsics (e.g: Fused-Multiply-Add -- FMA)
• Switching precisions / datatypes
• Loop unrolling
• Avoid implicit operations (e.g: division)

Optimizations if (code == BB)
• cudaMemCpy only necessary data
• Data/cache re-use via smart access pattern
• Sparsity / strided-access reduction

Idea: What Roofline metrics can we get 
LLMs to predict for us?
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• Roofline Classification Task:

Get an LLM to classify Arithmetic Intensity from source code?

Predicting exact Roofline metrics with LLMs is hard 
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• Roofline Regression Task:

Get an LLM to predict Arithmetic Intensity (AI) (FLOP/Byte) 

or Performance (FLOP/s) from source code?

❌ LLMs are not good at regression (yet…)

✅ LLMs can do classification

sentiment 
analysis

spam 
detection

Proven LLM 
Classification Tasks

Key Question: How well can an LLM classify Roofline AI of GPU codes?
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Arithmetic Intensity (AI) Classification Research Questions
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RQ1 (Baseline Roofline Classification)
• Can LLMs classify AI well when given the hardware roofline, and arithmetic intensity values? 

RQ2 (Zero-Shot Classification)
• Can LLMs classify AI well when given source code, execution specs, and minimal instructions? 

RQ3 (Few-Shot Classification)
• Can LLMs classify AI well when given source code, execution specs, and a few real examples 

of codes with their expected classifications? 
RQ4 (Fine-Tuned Classification)
• Can we fine-tune LLMs for roofline AI classification?

Source 
Code Kernel 

Launch 
Params

Exec 
Params

GPU 
Specs

“bandwidth-bound”
or

“compute-bound”

Roofline Classification:
LLM
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SoTA LLMs understand Arithmetic Intensity pretty well (RQ1)
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Findings:
• All models have a reasonably-good 

understanding of AI
• Reasoning models have good 

prediction accuracy w/ and w/out CoT
• 2 prompt examples is sufficient
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Roofline Specs:

RQ1 CoT Prompting Template

2, 4, 8-shot examples
w/ optional (chain-of-thought) CoT

(redacted)

120 BB questions
120 CB questions
Random Rooflines
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GPU Program Source Code Dataset Creation
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170 CUDA Programs
170 OpenMP Programs

Build Profile Dataset

Collected Attributes:
• Program Name
• Target Kernel Name
• Source Code
• Hardware Specs Info
• Executable Args
• Launch Grid / Block Size
• Arithmetic Intensity (AI) Values
• AI Classification (CB/BB)

Data Collection Design Decisions:

1) Sampled metrics 
on NVIDIA RTX 
3080 GPU

2) Concatenate all 
source files for 
prompting

4) Balanced dataset w.r.t: 
token counts, language, AI class

3) Profiled only 1st execution 
of 1 kernel per program

SPFLOP, DPFLOP, 
INTOP AI values

https://github.com/zjin-lcf/HeCBench
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Reasoning-based LLMs are the 
best at predicting AI (RQ2)
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Findings:
• Non-reasoning (i.e.: cheaper) models are marginally 

better than a coinflip at predicting the correct AI 
class

• Similar accuracy for both CUDA/OMP codes
• Still room for improvement with o3-mini-high 

achieving highest accuracy of 64%

[omitted context-setting beginning of prompt]

RQ2 Prompting Template (see paper for full prompt)

H
ar

dw
ar

e 
R

oo
fli

ne
 S

pe
cs

Ex
ec

ut
io

n 
Sp

ec
s



LLNL-CFPRES-2008561

Real code examples don’t improve 
accuracy by much (RQ3)
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Findings:
• Similar results to RQ2, suffers from higher query costs 

due to increased prompt size
• Non-reasoning models slightly improve accuracy (by 1-

2%) when given real code examples
• Accuracy was similar for both CUDA/OMP codes

[omitted context-setting beginning of prompt]

RQ3 Prompting Template (see paper for full prompt)
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hand-tuned CB CUDA/OMP 
example program

hand-tuned BB CUDA/OMP 
example program
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We need more data to fine-tune LLMs to predict AI (RQ4)
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Approach: 
• Fine-tuned gpt-4o-mini using an 80/20 train/test split of our 340-sample dataset (272/68 split)
• Used prompt template from RQ3 for training/testing
• Trained for 2 epochs (~$400 USD to train)
• Queried trained model 3x on each test sample

54% total accuracy

Findings:
• Fine-tuning causes model 

responses to be constant
• No response variation 

across the 3 repeated 
queries

• Not enough data to 
thoroughly train model

Predicted Class

CB BB

Tr
ue

 C
la

ss CB 24.51 % 25.49 %

BB 20.10 % 29.90 %

Fine-tuned LLM (1 epoch)

Predicted Class

CB BB

Tr
ue

 C
la

ss CB 50 % 0.00 %

BB 50 % 0.00 %

Fine-tuned LLM (2 epoch)

50% total accuracy
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Main Conclusions + Takeaways
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• SoTA LLMs do understand the Roofline Model for GPU performance analysis

• SoTA LLMs can predict parallel code performance – when limited to 
classifying Arithmetic Intensity (AI) of CUDA and OpenMP programs

• Reasoning-equipped LLMs (e.g.: o3-mini-high) offer significantly better 
classification accuracy when compared to non-reasoning LLMs

• Reasoning-equipped LLMs don’t need real code examples in their prompts to 
help them provide better classifications (can save money on input tokens)

• Fine-tuning an LLM for better AI classification accuracy is going to need more 
data and money



LLNL-CFPRES-2008561

Major Shortcomings + Future Work
• Small dataset size
• Scraped source codes include all files
• Linear/single-query approach
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Arithmetic Intensity
(FLOP/Byte) Estimate

FLOP Estimate
Bytes 

Read/Written 
Estimate

What if the LLMs could 
estimate these values for us?

🧐

Target Name Empirical FLOP 
Count

LLM-Estimated 
FLOP Count % Diff

resize-cuda 16779307 16777216 0.012 %

zerocopy-cuda 1050389 1048576 0.17 %

iso2dfd-cuda 54419825 53196468 2.24 %

nlll-cuda 6006 6273 4.44 %

backprop-cuda 3080240 3080192 0.001 %

We currently have some success in applying 
Question Decomposition to estimate FLOPs

Source 
Code

LLM task 1

LLM task 2

LLM task 3

FLOP 
Estimate
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🙋 Questions 🙋
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Slides + Paper 
+ Poster 

Available Here
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Thank You 😊
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