
Understanding Error Sensitivity in Checkpointing
for Linear System Solvers

Bohan Zhang, Yafan Huang, Jerry Li, Guanpeng Li (Advisor)

Computer Science Department, University of Iowa, Iowa City, IA, The United States

Sensitivity Study Setup

● Motivation
○ Large-scale iterative linear solvers require fault tolerance due to

long runtimes and high failure risks, but traditional checkpointing
introduces significant storage overhead.

○ Error-bounded lossy compression can significantly reduce
checkpoint sizes but introduces compression errors that may lead to
additional computational overhead (extra iterations).

○ Unclear how compressor configuration influence extra iterations and
compressed checkpoint size leaving users dependent on inefficient
trial-and-error tuning.

● Our goals:
○ Analysis of compressor configurations' impacts on checkpoint

size and compression error.
○ Quantification of compression error's effect on solver

convergence and number of extra iterations.
○ Investigation of solver behavior when recovering checkpoints at

various execution stages.

Introduction

Error-bounded Lossy Compression
Key Observations

Lossy Checkpoint Scheme

1. Application-level Checkpointing: The scheme employs lossy checkpointing at
the application level, independent of external fault detection.

2. Computation Component: Performs core numerical operations each iteration
and produces the intermediate solution vector.

3. Checkpoint Scheduler: Periodically saves the intermediate solution vector as
an uncompressed raw checkpoint.

4. Lossy Compression: Apply compression configurations to raw checkpoint.
5. Recovery: On faults, the solver decompresses the checkpoint, restoring the

solution vector and re-initializing variables.

● Definition: A data reduction technique that offers aggressive
compression ratios by allowing a controlled amount of data loss.

● Error Bound:
○ Maximum difference between original and decompressed data.

● Error Modes:
○ ABS: Error capped by a fixed constant.
○ REL: Error scaled by the data range.

● Prediction Algorithms:
○ Lorenzo: Uses local neighbors to predict and reduce redundancy.
○ Block Regression: Splits data into blocks for polynomial fitting.
○ Spline Interpolation: Uses spline curves to approximate data.
○ Transforms: Concentrate crucial low-frequency parts, discarding

less critical high-frequency details.

Future Works

(a) Checkpoint Size vs. Configurations (b) Compression Error vs. Configurations

(c) Extra Iterations vs. Configurations (d) Compression Error vs. Extra Iterations
at Rollback Checkpoints (RBC)

Takeaway 1: By increasing the error bound and using the Lorenzo algorithm
with relative error mode, we can effectively reduce checkpoint size.

Takeaway 2: Using lower error bounds (especially with ABS mode) keeps
compression error small, thereby minimizing the number of extra iterations.

Takeaway 3:In early solver stages, larger compression errors are
acceptable, as the iterative process can correct them. Near convergence,
smaller errors are essential to avoid excessive extra iterations.

● Extend our study to additional iterative solvers (such as GMRES and Jacobi).
● Broader range of fault models, thereby validating and generalizing our findings.

● We focus on the Conjugate Gradient (CG) method, a widely used
solver for symmetric positive-definite matrices whose performance
is representative of iterative approaches.

● We utilize the SZ3 lossy compressor to compress checkpoints,
exploring error bounds from 3×10-3 to 5×10-6, various error modes
(ABS and REL), and prediction algorithms provided by SZ3
(Interpolation and Lorenzo).

● Metrics:
○ Checkpoint Size: Storage needed for compressed solution vector.
○ Compression Error: Measured by mean squared error (MSE)

between original and decompressed solution vectors.
○ Extra Iterations: Additional iterations needed to converge due to

compression-induced errors.

