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Sensitivity Study Setup

● Motivation
○ Large-scale iterative linear solvers require fault tolerance due to 

long runtimes and high failure risks, but traditional checkpointing 
introduces significant storage overhead.

○ Error-bounded lossy compression can significantly reduce 
checkpoint sizes but introduces compression errors that may lead to 
additional computational overhead (extra iterations).

○ Unclear how compressor configuration influence extra iterations and 
compressed checkpoint size leaving users dependent on inefficient 
trial-and-error tuning.

● Our goals:
○ Analysis of compressor configurations' impacts on checkpoint 

size and compression error.
○ Quantification of compression error's effect on solver 

convergence and number of extra iterations.
○ Investigation of solver behavior when recovering checkpoints at 

various execution stages.

Introduction

Error-bounded Lossy Compression
Key Observations

Lossy Checkpoint Scheme

1. Application-level Checkpointing: The scheme employs lossy checkpointing at 
the application level, independent of external fault detection.

2. Computation Component: Performs core numerical operations each iteration 
and produces the intermediate solution vector.

3. Checkpoint Scheduler: Periodically saves the intermediate solution vector as 
an uncompressed raw checkpoint.

4. Lossy Compression: Apply compression configurations to raw checkpoint.
5. Recovery: On faults, the solver decompresses the checkpoint, restoring the 

solution vector and re-initializing variables.

● Definition: A data reduction technique that offers aggressive 
compression ratios by allowing a controlled amount of data loss.

● Error Bound: 
○ Maximum difference between original and decompressed data.

● Error Modes:
○ ABS: Error capped by a fixed constant. 
○ REL: Error scaled by the data range.

● Prediction Algorithms:
○ Lorenzo: Uses local neighbors to predict and reduce redundancy.
○ Block Regression: Splits data into blocks for polynomial fitting.
○ Spline Interpolation: Uses spline curves to approximate data.
○ Transforms: Concentrate crucial low-frequency parts, discarding 

less critical high-frequency details.

Future Works

(a) Checkpoint Size vs. Configurations (b) Compression Error vs. Configurations

(c)  Extra Iterations vs. Configurations (d)  Compression Error vs. Extra Iterations 
at Rollback Checkpoints (RBC)

Takeaway 1: By increasing the error bound and using the Lorenzo algorithm 
with relative error mode, we can effectively reduce checkpoint size.

Takeaway 2: Using lower error bounds (especially with ABS mode) keeps 
compression error small, thereby minimizing the number of extra iterations.

Takeaway 3:In early solver stages, larger compression errors are 
acceptable, as the iterative process can correct them. Near convergence, 
smaller errors are essential to avoid excessive extra iterations.

● Extend our study to additional iterative solvers (such as GMRES and Jacobi).  
● Broader range of fault models, thereby validating and generalizing our findings.

● We focus on the Conjugate Gradient (CG) method, a widely used
solver for symmetric positive-definite matrices whose performance
is representative of iterative approaches.

● We utilize the SZ3 lossy compressor to compress checkpoints, 
exploring error bounds from 3×10-3 to 5×10-6, various error modes 
(ABS and REL), and prediction algorithms provided by SZ3 
(Interpolation and Lorenzo).

● Metrics:
○ Checkpoint Size: Storage needed for compressed solution vector.
○ Compression Error: Measured by mean squared error (MSE) 

between original and decompressed solution vectors.
○ Extra Iterations: Additional iterations needed to converge due to 

compression-induced errors.


