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1. BACKGROUND

 TEZip [1]: Data compression tool by AI predicting future
frames and storing only the delta
 Supported AI models: PredNet and ConvLSTM
 Need for Speed:
 HPC requires efficient I/O and data reduction
 TEZip’s Python-based implementation: TensorFlow, later
moved to PyTorch [2], but faced performance bottlenecks
(Python’s GIL, repeated data conversions)

2. APPROACH

 Conclusion 
 Refactoring TEZip with C++/LibTorch
 Highly efficient: Training up to 4x / Compression ~13x / 
Decompression ~4x by eliminating Python overhead
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Figure 3.7 Compression Time 
vs. Error-bound on KITTI

Figure 3.8 Decompression Time 
vs. Error-bound on KITTI

Table 3.2 Performance Summary for each dataset  

 Use of LibTorch: C++ based PyTorch implementation -- free
of Python overhead to achieve performance improvement
 C++/LibTorch Refactor: Eliminates Python’s GIL and
overhead, running training, delta storage, and reconstruction on
optimized GPU kernels.
 Seamless Integration: Seamlessly deployable on multi-core
CPU/GPU clusters and remains model-agnostic for additional
deep models while maintaining

3. EVALUATION

Table 3.1 Datasets: KITTI[4], NYX[5], and Hurricane Isabel[5]  

 Key stages:
 Data creation: Converts raw images into HDF5/HKL files for
training and validation

 Model training: Trains a predictive neural network to
accurately predict future frames

 Compression: Predict frames and stores only the difference
 Decompression: Restore original frames by adding deltas
back to the predicted frames

 Error-bound Function
 TEZip provides user-specified threshold controlling how much
each pixel can deviate from its original value

Figure 1 TEzip Architecture

4. CONCLUSION AND FUTURE WORK
 Future work: 
 Evaluate TEZip on additional scientific datasets 
and new predictive models

Summary: LibTorch eliminates Python Overhead !!

Benchmark Datasets

Key stages in TEZip are accelerated by LibTorch

Break-down analysis with error-bound in TEZip

TEZip: AI-based Data Compression Tool

We accelerates key stages in TEZip by LibTorch

Figure 3.6 Original image (left) vs. 
Predicted (right) image

with 10% error-bound in KITTI

How can we make TEZip faster ? 

13x 5x 13.7x 4x

11x 3.7x


