
Refactoring TEZip:
Integrating Python-Based Predictive Compression
into an HPC C++/LibTorch Environment

Refactoring TEZip:
Integrating Python-Based Predictive Compression

into an HPC C++/LibTorch Environment
Mina Yousef †1, Amarjit Singh †2, Kento Sato †2

†1: CIS - Nile University, †2: RIKEN Center for Computational Science

1. BACKGROUND

 TEZip [1]: Data compression tool by AI predicting future
frames and storing only the delta
 Supported AI models: PredNet and ConvLSTM
 Need for Speed:
 HPC requires efficient I/O and data reduction
 TEZip’s Python-based implementation: TensorFlow, later
moved to PyTorch [2], but faced performance bottlenecks
(Python’s GIL, repeated data conversions)

2. APPROACH

 Conclusion
 Refactoring TEZip with C++/LibTorch
 Highly efficient: Training up to 4x / Compression ~13x /
Decompression ~4x by eliminating Python overhead

[1] Rupak Roy et al., “Compression of time evolutionary image data through predictive deep neural networks”, IEEE/ACM CCGrid2021, doi: 10.1109/CCGrid51090.2021.00014, 2021
[2] Akshay Nambudiripad et al “Development of TEZip in PyTorch: Integrating new prediction models into an existing compression framework”, SC ’24 (Poster), 2024
[3] William Lotter et al., “Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning, URL https://arxiv.org/abs/1605.08104, 2017
[4] Sun, Haodong et al., “Tourism Demand Forecasting of Multi-Attractions with Spatiotemporal Grid: a Convolutional Block Attention Module Model”, Information Technology & Tourism , 2023
[5] Andreas Geiger et al, “Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite”, In 2012 IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2012. 6248074.

Acknowledgement: This work has been supported by the COE research grant in computational science from Hyogo Prefecture and Kobe City through Foundation for Computational Science.
This work ("AI for Science" supercomputing platform project) was supported by the RIKEN TRIP initiative (System software for AI for Science).

Please find Mina’s CV at this QR code

Figure 3.5 Overall Time on Hurricane

Figure 3.3 Overall Time on KITTI Figure 3.4 Overall Time on NYX

Figure 3.7 Compression Time
vs. Error-bound on KITTI

Figure 3.8 Decompression Time
vs. Error-bound on KITTI

Table 3.2 Performance Summary for each dataset

 Use of LibTorch: C++ based PyTorch implementation -- free
of Python overhead to achieve performance improvement
 C++/LibTorch Refactor: Eliminates Python’s GIL and
overhead, running training, delta storage, and reconstruction on
optimized GPU kernels.
 Seamless Integration: Seamlessly deployable on multi-core
CPU/GPU clusters and remains model-agnostic for additional
deep models while maintaining

3. EVALUATION

Table 3.1 Datasets: KITTI[4], NYX[5], and Hurricane Isabel[5]

 Key stages:
 Data creation: Converts raw images into HDF5/HKL files for
training and validation

 Model training: Trains a predictive neural network to
accurately predict future frames

 Compression: Predict frames and stores only the difference
 Decompression: Restore original frames by adding deltas
back to the predicted frames

 Error-bound Function
 TEZip provides user-specified threshold controlling how much
each pixel can deviate from its original value

Figure 1 TEzip Architecture

4. CONCLUSION AND FUTURE WORK
 Future work:
 Evaluate TEZip on additional scientific datasets
and new predictive models

Summary: LibTorch eliminates Python Overhead !!

Benchmark Datasets

Key stages in TEZip are accelerated by LibTorch

Break-down analysis with error-bound in TEZip

TEZip: AI-based Data Compression Tool

We accelerates key stages in TEZip by LibTorch

Figure 3.6 Original image (left) vs.
Predicted (right) image

with 10% error-bound in KITTI

How can we make TEZip faster ?

13x 5x 13.7x 4x

11x 3.7x

