
Memory Allocation Reuse Strategy: This strategy implements a 
cyclic or loop-back use of memory where each segment is reused 
after data processing is complete, without waiting for all 
processing to conclude. This cyclic reuse is managed through 
efficient scheduling algorithms that track memory usage patterns 
and predict availability, thus facilitating a more continuous and 
seamless data feed into the processor.

The main contributions of this research are threefold:

ABSTRACT

INTRODUCTION

SpeedLLM ARCHITECTURE

EXPERIMENTS AND RESULTS

CONCLUSION

REFERENCES

SpeedLLM: An FPGA Co-design of Large 
Language Model Inference Accelerator 

SpeedLLM, a neural network accelerator designed on the Xilinx Alevo U280 platform and optimized for the Tinyllama framework to enhance edge computing 
performance. Key innovations include data stream parallelism, a memory reuse strategy, and Llama2 operator fusion, which collectively reduce latency and 
energy consumption. SpeedLLM’s data pipeline architecture optimizes the read-compute-write cycle, while the memory strategy minimizes FPGA resource 
demands. The operator fusion boosts computational density and throughput. Results show SpeedLLM outperforms traditional Tinyllama implementations, 
achieving up to 4.8× faster performance and 1.18× lower energy consumption, offering improvements in edge devices.

Background.The advancements in Artificial Intelligence have ushered in an era 
dominated by Large Language Models (LLMs) . When deployed on the edge scene, the 
architecture of Tinyllama,a compressed and optimized version of LLM, needs to be 
accelerated to reduce costs and energy consumption.
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SpeedLLM builds upon and extends existing research landscape by 
integrating several proven optimization strategies into a single coherent 
system that functions efficiently on the U280 FPGA. By implementing 
effective methods on LLMs and hardware design, our accelerator 
significantly enhances the performance capabilities of computing devices, 
driving forward for real-world applications of deep learning in resource-
constrained environments.

Evaluation Setup
We use a Llama2 architecture model series trained on the TinyStories 
dataset. We use the stories 15M dataset in Tinyllama and implement the 
accelerator on  U280 FPGAs, verified with RTL emulation using Vitis 
2021.1.
Evaluation Results
Latency & Thoughput.Latency measures the total time taken for 
complete inference by the timing function in the host program, while 
throughput quantifies the decoding speed by calculating the ratio of 
output tokens to the duration of the decode stage. Fig.2(a) shows our 
accelerator significantly surpasses the unoptimized one, delivering a 
latency speedup of up to 4.8 times. 
Energy efficiency.Fig.2(b) shows the energy efficiency of our 
accelerator. Compared to no fuse accelerator, our method achieves 
1.01× energy efficiency, mainly due to reduced redundant off-chip 
memory communications through the llama model. With higher 
throughput and comparable poweruse, ours achieves 1.18× better 
energy efficiency than an unoptimized accelerator. This enhanced 
performance mainly stems from the use of specially tailored high-
performance kernels and their effective integration within our 
accelerator.

SpeedLLM, an innovative acceleration solution implemented efficient 
inference of Tinyllama on the Xilinx Alveo U280 FPGA in Fig.1.

Key contributions 
Customized data pipeline: We propose a multi-level read-
compute-write iteration that minimizes the iterative and time-
consuming cycles, obtaining an increase in the throughput and a 
reduction in the execution time by ensuring that compute units 
are constantly fed with data, avoiding idle times.
Memory Allocation Reuse Strategy: This strategy implements 
a cyclic or loop-back use of memory where each segment is 
reused after data processing is complete, without waiting for all 
processing to conclude. This cyclic reuse is managed through 
efficient scheduling algorithms that track memory usage patterns 
and predict availability, thus facilitating a more continuous and 
seamless data feed into the processor.
Operators Fusion of Llama2: Fusing operations into a single, 
composite operator minimizes the intermediate data writes/read 
between operations, reducing processing time and memory usage.
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Overall architecture
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Challenges&Solutions.LLMs present significant challenges due to their 
enormous size and computational demands. Model compression techniques such as 
sparsification and quantization, although beneficial, often suffer from a lack of support by 
conventional hardware like GPUs, fails to translate into real-world performance 
gains.Field Programmable Gate Arrays (FPGAs) stand out as a particularly effective 
solution. The reconfigurability of FPGAs allows for the tuning of hardware algorithms to 
optimize both computational throughput and memory utilization.

Figure 1:The overall architecture of SpeedLLM, including Matrix Processing Engine(MPE), 
Memory Management, and Special Function Unit(SFU). Figure 2: The performance of SpeedLLM
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