
Memory Allocation Reuse Strategy: This strategy implements a
cyclic or loop-back use of memory where each segment is reused
after data processing is complete, without waiting for all
processing to conclude. This cyclic reuse is managed through
efficient scheduling algorithms that track memory usage patterns
and predict availability, thus facilitating a more continuous and
seamless data feed into the processor.

The main contributions of this research are threefold:

ABSTRACT

INTRODUCTION

SpeedLLM ARCHITECTURE

EXPERIMENTS AND RESULTS

CONCLUSION

REFERENCES

SpeedLLM: An FPGA Co-design of Large
Language Model Inference Accelerator

SpeedLLM, a neural network accelerator designed on the Xilinx Alevo U280 platform and optimized for the Tinyllama framework to enhance edge computing
performance. Key innovations include data stream parallelism, a memory reuse strategy, and Llama2 operator fusion, which collectively reduce latency and
energy consumption. SpeedLLM’s data pipeline architecture optimizes the read-compute-write cycle, while the memory strategy minimizes FPGA resource
demands. The operator fusion boosts computational density and throughput. Results show SpeedLLM outperforms traditional Tinyllama implementations,
achieving up to 4.8× faster performance and 1.18× lower energy consumption, offering improvements in edge devices.

Background.The advancements in Artificial Intelligence have ushered in an era
dominated by Large Language Models (LLMs) . When deployed on the edge scene, the
architecture of Tinyllama,a compressed and optimized version of LLM, needs to be
accelerated to reduce costs and energy consumption.

[1] Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui Cai, and Zhiru
Zhang. 2024. Understanding the potential of fpga-based spatial acceleration for large language model inference. ACM
Transactionson Reconfigurable Technology and Systems 18, 1 (2024), 1–29.
[2] Nazanin Farahpour, Zhenman Fang, and Glenn Reinman. 2020. Fpga-based near data processing platform selection
using fast performance modeling (wip paper).In The 21st ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems. 151–155.
[3] Shulin Zeng, Jun Liu, Guohao Dai, Xinhao Yang, Tianyu Fu, Hongyi Wang, Wen-heng Ma, Hanbo Sun, Shiyao Li,
Zixiao Huang, et al. 2024. Flightllm: Efficient large language model inference with a complete mapping flow on fpgas.
In Pro-ceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 223–234.

SpeedLLM builds upon and extends existing research landscape by
integrating several proven optimization strategies into a single coherent
system that functions efficiently on the U280 FPGA. By implementing
effective methods on LLMs and hardware design, our accelerator
significantly enhances the performance capabilities of computing devices,
driving forward for real-world applications of deep learning in resource-
constrained environments.

Evaluation Setup
We use a Llama2 architecture model series trained on the TinyStories
dataset. We use the stories 15M dataset in Tinyllama and implement the
accelerator on U280 FPGAs, verified with RTL emulation using Vitis
2021.1.
Evaluation Results
Latency & Thoughput.Latency measures the total time taken for
complete inference by the timing function in the host program, while
throughput quantifies the decoding speed by calculating the ratio of
output tokens to the duration of the decode stage. Fig.2(a) shows our
accelerator significantly surpasses the unoptimized one, delivering a
latency speedup of up to 4.8 times.
Energy efficiency.Fig.2(b) shows the energy efficiency of our
accelerator. Compared to no fuse accelerator, our method achieves
1.01× energy efficiency, mainly due to reduced redundant off-chip
memory communications through the llama model. With higher
throughput and comparable poweruse, ours achieves 1.18× better
energy efficiency than an unoptimized accelerator. This enhanced
performance mainly stems from the use of specially tailored high-
performance kernels and their effective integration within our
accelerator.

SpeedLLM, an innovative acceleration solution implemented efficient
inference of Tinyllama on the Xilinx Alveo U280 FPGA in Fig.1.

Key contributions
Customized data pipeline: We propose a multi-level read-
compute-write iteration that minimizes the iterative and time-
consuming cycles, obtaining an increase in the throughput and a
reduction in the execution time by ensuring that compute units
are constantly fed with data, avoiding idle times.
Memory Allocation Reuse Strategy: This strategy implements
a cyclic or loop-back use of memory where each segment is
reused after data processing is complete, without waiting for all
processing to conclude. This cyclic reuse is managed through
efficient scheduling algorithms that track memory usage patterns
and predict availability, thus facilitating a more continuous and
seamless data feed into the processor.
Operators Fusion of Llama2: Fusing operations into a single,
composite operator minimizes the intermediate data writes/read
between operations, reducing processing time and memory usage.

Peipei Wang1, Wu Guan1, Liping Liang1, Zhijun Wang1, Hanqing Luo1, Zhibin Zhang2

1Beijing University of Posts and Telecommunications,China 2Institute of Computing Technology, Chinese Academy of Sciences,China

Overall architecture

The ACM International Symposium on High-Performance, Parallel and Distributed Computing (HPDC 2025)

Challenges&Solutions.LLMs present significant challenges due to their
enormous size and computational demands. Model compression techniques such as
sparsification and quantization, although beneficial, often suffer from a lack of support by
conventional hardware like GPUs, fails to translate into real-world performance
gains.Field Programmable Gate Arrays (FPGAs) stand out as a particularly effective
solution. The reconfigurability of FPGAs allows for the tuning of hardware algorithms to
optimize both computational throughput and memory utilization.

Figure 1:The overall architecture of SpeedLLM, including Matrix Processing Engine(MPE),
Memory Management, and Special Function Unit(SFU). Figure 2: The performance of SpeedLLM

(a) Normalized Latency (b) Effective energy

