Task Graph Restructuring via Function Based Annotation For Large-Scale Scientific Applications

Barry Sly-Delgado(bslydelg@nd.edu) University of Notre Dame - http://ccl.cse.nd.edu/

Workflow Stack Graph Restructuring

Distributed Frameworks allow for users to create large-scale
distributed scientific applications within languages such as
Python. Within these frameworks users provide functions
that represent individual tasks in a broader DAG. Users
compose these graphs using the provided API of a given
framework. However, the initial composition of the DAG may
inhibit the overall performance of the application. That is,
the resulting data flow from the initial topology of a graph
can become a bottleneck via network and disk utilization. A
graph can be reshaped, producing an identical result with a
more ideal dataflow that limits network and disk strain. This
work provides the methodology used for function
annotation, which provides insight to reshape applications
and better manage data. The methodology is incorporated
into the composition of the frameworks Dask and TaskVine.
Additionally, we show improvement with real-world
applications in the domain of high energy physics

def write (events):
import awkward as ak
d = ak.to_parquet (events,
return d

"out .parquet")

@daskvine_merge
def merge (revents) :
import awkward as ak
return ak.concatenate (events)

= oo -~ [=2) w + w [+ —

—
—
-~

graph = {}
events = get_events()
proxies = []

— — —
w ro —

$

Tree Reduction

for i in range (events.npartitions):
d = events.partitions[i:1+1]
proxies.append (d)

— — — —
o =l o w

19 while(len(delayed) > 1):

20 # removes merge_size proxies

21 to_merge = get_proxies (merge_size, proxies)
22 d = dask.delayed(merge) (xto_merge)

23 proxies.append (d)

24 d = dask.delayed(write) (proxies[0])
s graph[f"{dataset_name}_write"] = d
26

27 # Single Node Reduction

3 d = dask.delayed(write) (d)

800 A

700 -

Application

Task Scheduler

g)
[, 6L 5 G

Compute Cluster

5615 B

— N
N— -
Shared Filesystem
SN— -

BN 90 percent
B 95 percent

29 graph[f"{dataset_name}_write"] = d
30

31 # Auto Merge

2 d = dask.delayed(merge) (events)

3 d = dask.delayed(write) (d)

3 graph[f"{dataset_name}_write"] = d

ouT

—b[Application

I

Annotation
Function X

S

Function

Function X’

[

e

Args
N N

S~

>

4[DAG Manager

Task Executar]

*[Task Scheduler

_____ A :
(7T kel) [TaskDef |\
: Function Ags | | fuiie
---------- " Wrapper
ouT 1

Executable

]_F

Function

$

Args

Input Files

—— flat reduction
- 3-ary reduction

e ——

BN 99 percent HEE 100 percent
o
=
c
=
=
ac
v
RY:
v
L
(-
o
o 30 -
O
=
>
Z 201
10 A
T 0 2
5 6 flat
Merge Size 0

200

400 600

Runtime (s)

800

UNIVERSITY OF

NOTRE DAME

4

Gods Rew

(Left)) - Competition times
of X% of tasks using a N-ary
reductions. Generally, as
the size of N increases the
the time to complete X% of
tasks Increases as well.
Note the Increasing
disparity between 99% and
100% completion

(Right) - The amount of
concurrent tasks executing
during a run of RsTriPhoton
using a flat reduction and a
3-ary reduction. Larger
reduction sizes produce a
large tail during execution.

_:* TaskVine

mailto:bslydelg@nd.edu

