
Solution: Reusing Context with Pervasive Context 
Management

Thanh Son Phung
Cooperative Computing Lab

University of Notre Dame
tphung@nd.edu

Scaling Up Throughput-oriented SLM Inference Applications on 
Opportunistic GPU Clusters with Pervasive Context Management

Abstract
Executing large-scale, throughput-oriented Small Language Model 
(SLM) inference workloads on conventional shared clusters leads to 
long job queues due to inefficient static resource allocation. While 
opportunistic GPU clusters offer a vast pool of compute, their 
transient nature makes them impractical, as the overhead of 
repeatedly initializing an inference job's state with billions of 
parameters after preemption is prohibitively high.

We introduce Pervasive Context Management, a technique that 
makes SLM inference on opportunistic resources efficient. It works 
by decoupling the computational context, such as model weights 
and software dependencies, from the actual inference execution. 
This enables the efficient reuse and rapid context transfer 
between inferences across intermittently available GPUs, virtually 
eliminating initialization costs. Our evaluation shows this 
approach accelerates the end-to-end completion of large-scale 
SLM workloads by up to 3.6x compared to traditional distributed 
executions, effectively scaling inference throughput on opportunistic 
resources.

Background: Parsl-TaskVine Parallel Framework

Implementation: Code Sample With 
Pervasive Context Management

Results

Functions generated from the application are passed to Parsl, which creates a 
DAG of functions and converts them into tasks for TaskVine Scheduler. Tasks are 

then scheduled to TaskVine Workers in the cluster, and TaskVine Factory 
moderates the number of workers as pre-specified.

N
um

be
r o

f G
PU

s
(fr

om
 a

 h
et

er
og

en
eo

us
 5

67
-G

P
U

 p
oo

l 
of

 1
8 

di
ffe

re
nt

 N
V

ID
IA

 s
er

ie
s)

Opportunistic Scaling of a Fact Verification Application 
with Aggressive Opportunistic Node Acquisition

(150k inferences in 13 mins)

This sample shows how the inference context - a model 
state retained in a remote GPU - is decoupled from an 

inference execution, allowing its efficient reuse for 
subsequent inferences

Subsequent inferences of F reuse the same context in a remote worker’s GPU, 
memory, and disk as managed by the Library process

With a baseline of 20 GPUs, more context management results in 
much faster execution time. A free run that acquires opportunistic 
resources aggressively (i.e., Opportunistic Scaling) reduces the 

execution time of the application to 13 minutes. 

GPUs (i.e., workers) join the application’s pool individually 
as soon as they are available, pushing the execution time 

of 150k inferences to 13 minutes

http://nd.edu

