Scaling Up Throughput-oriented SLM Inference Applications on

Opportunistic GPU Clusters with Pervasive Context Management

Abstract

Executing large-scale, throughput-oriented Small Language Model
(SLM) inference workloads on conventional shared clusters leads to
long job queues due to inefficient static resource allocation. While
opportunistic GPU clusters offer a vast pool of compute, their
transient nature makes them impractical, as the overhead of
repeatedly initializing an inference job's state with billions of
parameters after preemption is prohibitively high.

We introduce Pervasive Context Management, a technique that
makes SLM inference on opportunistic resources efficient. It works
by decoupling the computational context, such as model weights
and software dependencies, from the actual inference execution.
This enables the efficient reuse and rapid context transfer
between inferences across intermittently available GPUs, virtually
eliminating initialization costs. Our evaluation shows this
approach accelerates the end-to-end completion of large-scale
SLM workloads by up to 3.6x compared to traditional distributed
executions, effectively scaling inference throughput on opportunistic
resources.

Solution: Reusing Context with Pervasive Context

Management

/" F’s context

(

Code

D\ 6

_input

Context |

P &

Soft

Context |

F's context

O

&

<

F's context
ready

/

Worker

/ Libra

_ibrary

ry Sandboﬂ

Context

C

/”—_—~\\
~
P B
7
~ Library ™
/ N\
/ \
A D) \
e \
\
\

ode

1 Code
| _ J

Co

_________ 2T .

.. | Context

/
’

ntext

[F,xﬂ

CF(x1) |

/ F(x1) Sandbox \

F(x1)

Context (X 1)

F

AN

)/

v b v

\

-

Local Cache
I

Cont.] { Cont.
input code

Soft
ware

memory, and disk as managed by the Library process

D=

Subsequent inferences of F reuse the same context in a remote worker’s GPU,

Thanh Son Phung

Cooperative Computing Lab
University of Notre Dame

tphung@nd.edu

Implementation: Code Sample With
Pervasive Context Management

from parsl import python_app
def load_model (model_path):

model = AutoModel.from_pretrained(model_path).to('gpu')
return {'model’': model}

@python_app

def infer_model(inputs, parsl_spec):
from parsl import load_variable_from_serverless
model = load_variable_from_serverless('model")
outputs = [model.generate(input) for input in 1inputs]

return outputs
model_path = ...
parsl_spec = {'context': [load_model, [model_pathl, {}1}
inputs = ...

results = infer_model(inputs, parsl_spec).result()

This sample shows how the inference context - a model
state retained in a remote GPU - is decoupled from an
Inference execution, allowing its efficient reuse for
subsequent inferences

Background: Parsl-TaskVine Parallel Framework

Manager Node

. . Cluster
Applicati [=f } - P &
K pp |cal|on y T(Q(X)) / T Worker \
A 9) @)
Parsl) ag - }3}» . > & > 8
b >
l ? // Worker Worker
i E
TaskVine |a ~(9) / N Q) © \ OO
Scheduler
3 IxONES T l
a)
(esnion 1 Shared Filesystem
dSKVvine
Factory N\ : N 2 s r)
e Y,

Functions generated from the application are passed to Parsl, which creates a
DAG of functions and converts them into tasks for TaskVine Scheduler. Tasks are
then scheduled to TaskVine Workers in the cluster, and TaskVine Factory
moderates the number of workers as pre-specified.

Results

Fact Verification Application (~150k inferences)

with Varying Scaling Strategies

10000 A

8000 ~

6000 ~

4000

End-to-end Execution Time (s)

2000 ~

10400

5300

2900

Number of GPUs

783

|
Naive

(20 GPUs)

Partial Citx Mgmt
(20 GPUs)

Full Ctx
(20 G

Mgmt Opportunistic Scaling with
PUs) Full Ctx Mgmt |
(~157 GPUs)

Scaling Strategies

With a baseline of 20 GPUs, more context management results in
much faster execution time. A free run that acquires opportunistic
resources aggressively (i.e., Opportunistic Scaling) reduces the
execution time of the application to 13 minutes.

(from a heterogeneous 567-GPU pool

Opportunistic Scaling of a Fact Verification Application

-
~
U

(-
U
o

(-
N
wu

(-
-
o

of 18 different NVIDIA series)

~J
wun

U
o

o

with Aggressive Opportunistic Node Acquisition
(150K inferences in 13 mins)

n

)

—— num-workers - 150k 8
—— num-infers v
v

Y

=

& O

100k O

4

o

Q

- 50k 8

(T

O

—

v

Q

SR =

1 1 1 1 1 1 1 1 1 3
0 100 200 300 400 500 600 700 800 P

Time (s)

GPUs (i.e., workers) join the application’s pool individually

as

%% CéIoo]_s

soon as they are available, pushing the execution time
of 150k inferences to 13 minutes

] UNIVERSITY OF

1) NOTRE DAME

http://nd.edu

