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Accurate prediction of chemical properties enables breakthroughs across

AUC progression and final accuracy metrics Positioning our model against Baselines Pre and post Meta-Learning: UMAP latent space visualization
various scientific domains, ranging from drug discovery to materials design
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81.72 £ 0.04 78.87 £0.08 Our Model

79.88+ 0.035 72.3 + 0.035 Meta-GNN In conclusion, our Few-shot learning framework for class-

Conducting : Bd- Time and cost | based property prediction demonstrates competitive
Chemical | intensive, ethically 70.04 = 0.06 61.76 £ 0.071 H performance, often exceeding that of traditional baselines.
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Chemical properties

The evolving landscape of chemical property prediction

. Struggle to scale with
Statistical Methods larger datasets and

an_d quaptum growing molecular
Simulations complexity. Our Few-shot Learning approach uses a Meta-learning framework based on prototypical networks, trained Our meta-learning approach shows strong promise in the Few-

episodically to enable few-shot generalization. Our model combines a frozen Roberta-Zinc480M backbone shot class-based molecular property prediction domain. Future
for molecular embeddings with a trainable MLP head that adapts across property prediction tasks. work includes:

Implement task-based attention mechanisms for improved
cross-task generalization and explore deeper MLP’s
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Meta learning step
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However, in chemical domains such as toxicology, labeled data is often FIR-MMPE = 1 ' VR B

scarce. In these low-data regimes, conventional Al and ML models tend to RoBERTA-ZINC480(Frozen) MLP block Desired et

underperform and struggle to generalize [smiles >768dim vector] (Trainable) property 2. Adapt our episodic training pipeline to Graph-based molecular
encoders like EGAT, enabling enhanced structure-aware Few-shot

learning.
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Below is a visual overview of the episodic Meta-learning process.
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Molecule Graph representation
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