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The enforcer is injected at runtime, it loads the contract and wraps key 
syscalls to intercept and determine if the path that was attempted to be 
accessed is in our contract, and if the access type matches the request. If the 
validation fails, the call is blocked. The contract is the description of an 
applications I/O patterns, so the behaviour must match.

Advanced scientific computing depends on applications that run on large high 
performance clusters. The filesystem fulfills the I/O needs of these applications, 
such as, moving files, synchronization between tasks, delivering complex software 
trees and providing buffers between tasks. End users often don’t know what 
complex applications are going to require from the filesystem until runtime. 
PLEDGE addresses this problem by tracing, summarizing and enforcing the 
applications I/O behavior.
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If the applications intentions 
are declared upfront, we can 
take full advantage of the 
internal storage and I/O 
capacity of the cluster. These 
intentions are expressed with 
"consistency contracts", for 
which we provide a “tracer” 
tool, to generate contracts 
for end users.
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Tracing a user process is done by observing and logging syscalls. The paths 
used in said syscalls allow us to start building a description of the I/O patterns 
of a program. We group each path with all the requested access types for it 
and generate the contract. Contracts can also be provided by the user.
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Contracts allow us to exploit 
the I/O patterns of scientific 
applications by simplifying 
the process of caching, 
buffering and distribution. 
An "enforcer" wrapper is 
provided to ensure the 
application respects the 
declared consistency 
contract, and it informs users 
when a violation occurs.

A relatively simple application still depends on more files, operations and syscalls 
than initially claimed. Furthermore, complex applications, tend to do unexpected 
things, like loading configuration files for shared libraries at runtime before main.
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