
PLEDGE: 
Accelerating Data Intensive Scientific Applications with Consistency 

Contracts
Andres Iglesias and Ben Tovar {aiglesi3,btovar}@nd.edu

Acknowledgements: Prof. Scott Hampton, Prof. Paul Brenner

The enforcer is injected at runtime, it loads the contract and wraps key 
syscalls to intercept and determine if the path that was attempted to be 
accessed is in our contract, and if the access type matches the request. If the 
validation fails, the call is blocked. The contract is the description of an 
applications I/O patterns, so the behaviour must match.

Advanced scientific computing depends on applications that run on large high 
performance clusters. The filesystem fulfills the I/O needs of these applications, 
such as, moving files, synchronization between tasks, delivering complex software 
trees and providing buffers between tasks. End users often don’t know what 
complex applications are going to require from the filesystem until runtime. 
PLEDGE addresses this problem by tracing, summarizing and enforcing the 
applications I/O behavior.

RW

Trace

Contract

Directory Access

/soft/* MRW
/tmp/* CRW
/data/* R

… …

User program

W

R

If the applications intentions 
are declared upfront, we can 
take full advantage of the 
internal storage and I/O 
capacity of the cluster. These 
intentions are expressed with 
"consistency contracts", for 
which we provide a “tracer” 
tool, to generate contracts 
for end users.

Enforce

R

W

RW

Contract

Directory Access

/soft/* MRW
/tmp/* CRW
/data/* R

… …

User program

Inject enforcer 
into user code Load contract Intercept 

syscalls
Enforce 
contract

Observe and 
log syscalls

Group path 
with requested 

access type

Parse log and 
extract path 
from syscalls

Build contract

Tracing a user process is done by observing and logging syscalls. The paths 
used in said syscalls allow us to start building a description of the I/O patterns 
of a program. We group each path with all the requested access types for it 
and generate the contract. Contracts can also be provided by the user.

Summarization 
allows us to get a 

high-level 
overview of the 

I/O patterns

Contract
Directory Access

/soft/makeflow MRW

/tmp/temps.1.out CRW

/tmp/temps.2.out CRW

/data/input_a R
/data/input_b R

… …

Group paths

Contract
Directory Access

/soft/* MRW

/tmp/* CRW

/data/* R
… …

Summarization

Enforcing

Tracing

Access types
Letter Access

M Metadata

C Create
D Delete
R Read
W Write
L List

Contracts allow us to exploit 
the I/O patterns of scientific 
applications by simplifying 
the process of caching, 
buffering and distribution. 
An "enforcer" wrapper is 
provided to ensure the 
application respects the 
declared consistency 
contract, and it informs users 
when a violation occurs.

A relatively simple application still depends on more files, operations and syscalls 
than initially claimed. Furthermore, complex applications, tend to do unexpected 
things, like loading configuration files for shared libraries at runtime before main.

Process

Process

NSF Grant
CSR-2317556


