

Adaptive GPU Power Capping:

Balancing Energy Efficiency, Thermal Control and Performance

Tanish Desai*, Jainam Shah*, Gargi Alavani, Snehanshu Saha, Santonu Sarkar Department of Computer Science & Information Systems, BITS Pilani – Goa Campus, APPCAIR

Introduction

We present an ML-driven, real-time GPU power-capping strategy—leveraging utilization, memory use, temperature and frequency—to adaptively set optimal caps. This yields up to **12.9%** energy savings, **11.4%** lower temperatures, and only a **2.7%** performance hit.

Methodology

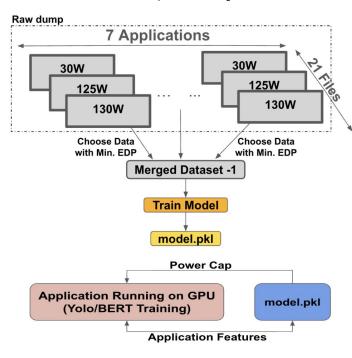
Training Pipeline

Data Collection:

- Performance data collected from three GPU kernels (DenseNet, CUDA matrix multiplication, CNN image processing).
- Programs created by running individual and combined kernels on an NVIDIA RTX 4000 Ada GPU.
- Metrics recorded: power, temperature, energy, GPU utilization, memory utilization, and frequency.
- Dataset constructed by selecting the power cap minimizing Energy Delay Product (EDP).

• Model Selection and Training:

- Models evaluated: Linear Regression, Random Forest, Decision Tree, XGBoost, CatBoost.
- k-fold cross-validation used to prevent overfitting.



Model Performance

• Table 1: Model Comparison

Shows MSE, MAE, and R2 for each model.

o CatBoost achieved minimum MSE and highest R2 score.

Table 1: Minimisation Metric: EDP

Model	MSE	MAE	\mathbb{R}^2
Linear Regression	18,979,841.72	3048.73	0.8869
Random Forest Regressor	4,728,518.83	628.92	0.9719
Decision Tree Regressor	10,701,882.51	627.56	0.9369
XGBoost Regressor	7,901,473.70	686.46	0.9521
CatBoost Regressor	4,018,389.22	834.17	0.9761

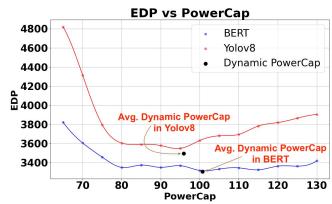
Results

Benchmark Applications:

 The benchmark applications we used included training a YOLOv8 model and fine-tuning a BERT model.

Dynamic vs Static Power Capping:

- Dynamic model converges rapidly to optimal power cap during execution
- Achieved significantly higher energy savings and temperature reductions than any static power cap when tested for YOLO, and delivered comparable energy savings for BERT.
- o Minor performance loss observed



Application Metrics

- YOLOv8: 12.87% energy gain, 11.38% temp reduction, 2.69% performance loss.
- BERT: 6.45% energy gain, 10.56% temp reduction, 3.26% performance loss.

Table 2: Performance, Energy, and Power Metrics for Applications

Application	Performance Loss	Energy Gain	Temp. Gain	Avg. Dynamic Power Cap	Best Static Power Cap (EDP)
Yolov8	2.69%	12.87%	11.38%	95.875	95
BERT	3.26%	6.45%	10.56%	100.669	100

Conclusion

- Dynamic power capping using machine learning significantly improves energy efficiency and thermal control with minimal performance loss.
- Enables smarter, greener supercomputing practices.
- Future work: Extend to multi-GPU systems and new architectures for broader applicability.

References

[1] D. Zhao, S. Samsi, J. McDonald, B. Li, D. Bestor, M. Jones, D. Tiwari, and V. Gadepally, "Sustainable Supercomputing for Al: GPU Power Capping at HPC Scale," in Proc. 2023 ACM Symposium on Cloud Computing (SCC) '23), pp. 589-586, CM 2023, DCI 91.1145/3206783.324273.

(SoCC '23), pp. 588–596, ACM,2023. DOI: 10.1145/3620678.3624793.

[2] J. McDonald, B. Li, N. Frey, D. Tiwari, V. Gadepally, and S. Samsi, "Great Power, Great Responsibility: Recommendations for Reducing Energy for Training Language Models," in Findings of the Association for Computational Linguistics: NAACL 2022, pp. 1962–1970, ACL, 2022. DOI: 10.18653/v1/2022.findings-naacl.151.

[3] G. A. Prabhu, T. Desai, S. Potdar, N. Gogari, S. Saha, and S. Sarkar, "Estimating Power Consumption of GPU Application Using Machine Learning Tool," in Proc.2024 IEEE 36th International Conference on Tools with Artificia Intelligence (ICTAI),pp. 734–739, 2024.

[4] J.-R. Yu, C.-H. Chen, T.-W. Huang, J.-J. Lu, C.-R. Chung, T.-W. Lin, M.-H. Wu, Y.-J. Tseng, and H.-Y. Wang, "Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study," J. Med. Internet Res., vol.24, no. 1, e28036, 2022. DOI: 10.2196/28036.

[5] P. Stanley-Marbell, "How Device Properties Influence Energy-Delay Metrics and the Energy-Efficiency of Parallel Computations," in Proc. Workshop on Power-Aware Computing and Systems (HotPower '15), pp. 31–35 ACM, 2015. DOI: 10.1145/2818613.2818744.