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 Adaptive GPU Power Capping:
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We present an ML-driven, real-time GPU power-capping strategy—leveraging 
utilization, memory use, temperature and frequency—to adaptively set optimal 
caps. This yields up to 12.9% energy savings, 11.4% lower temperatures, and 
only a 2.7% performance hit.

Training Pipeline

● Data Collection:
○ Performance data collected from three GPU kernels (DenseNet, CUDA 

matrix multiplication, CNN image processing).
○ Programs created by running individual and combined kernels on an 

NVIDIA RTX 4000 Ada GPU.
○ Metrics recorded: power, temperature, energy, GPU utilization, memory 

utilization, and frequency.
○ Dataset constructed by selecting the power cap minimizing Energy 

Delay Product (EDP).
● Model Selection and Training:

○ Models evaluated: Linear Regression, Random Forest, Decision Tree, 
XGBoost, CatBoost.

○ k-fold cross-validation used to prevent overfitting.

● Benchmark Applications:
○ The benchmark applications we used included training a YOLOv8 model 

and fine-tuning a BERT model.
● Dynamic vs Static Power Capping:

○ Dynamic model converges rapidly to optimal power cap during 
execution.

○ Achieved significantly higher energy savings and temperature reductions 
than any static power cap when tested for YOLO, and delivered 
comparable energy savings for BERT.

○ Minor performance loss observed

● Dynamic power capping using machine learning significantly improves 
energy efficiency and thermal control with minimal performance loss.

● Enables smarter, greener supercomputing practices.
● Future work: Extend to multi-GPU systems and new architectures for 

broader applicability.
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Model Performance
● Table 1: Model Comparison

Shows MSE, MAE, and R² for each model.
○ CatBoost achieved minimum MSE and highest R² score.

Application Metrics
● YOLOv8: 12.87% energy gain, 11.38% temp reduction, 2.69% performance 

loss.
● BERT: 6.45% energy gain, 10.56% temp reduction, 3.26% performance 

loss.


