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I Introduction

We present an ML-driven, real-time GPU power-capping strategy—leveraging
utilization, memory use, temperature and frequency—to adaptively set optimal
caps. This yields up to 12.9% energy savings, 11.4% lower temperatures, and
only a 2.7% performance hit.

I Results

e Benchmark Applications:
o The benchmark applications we used included training a YOLOv8 model
and fine-tuning a BERT model.
e Dynamic vs Static Power Capping:

I Methodology o Dynamic model converges rapidly to optimal power cap during
execution.
Training Pipeline o Achieved significantly higher energy savings and temperature reductions

than any static power cap when tested for YOLO, and delivered
comparable energy savings for BERT.
o Minor performance loss observed

e Data Collection:
o Performance data collected from three GPU kernels (DenseNet, CUDA
matrix multiplication, CNN image processing).
o Programs created by running individual and combined kernels on an

NVIDIA RTX 4000 Ada GPU. EDP vs PowerCap

o Metrics recorded: power, temperature, energy, GPU utilization, memory 4800 . BERT
utilization, and frequency.
o Dataset constructed by selecting the power cap minimizing Energy 4600 = Yolov8
Delay Product (EDP). 4400 e Dynamic PowerCap
o Model Selection and Training:
o Models evaluated: Linear Regression, Random Forest, Decision Tree, a 4200
XGBoost, CatBoost. 24000
o k-fold cross-validation used to prevent overfitting. Avg. Dynamic PowerCap
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IApplication Metrics

e YOLOV8: 12.87% energy gain, 11.38% temp reduction, 2.69% performance

loss.
Choose Data Choose Data . o ; 0 ; 0
with Min. EDP with Min. EDP . :ZEST. 6.45% energy gain, 10.56% temp reduction, 3.26% performance

Table 2: Performance, Energy, and Power Metrics for Appli-
cations

Performance Energy Temp. Avg. Dynamic Best Static
Application Loss Gain  Gain Power Cap  Power Cap (EDP)
Yolov8 2.69% 12.87% 11.38% 95.875 95
Power Cap BERT 3.26% 6.45% 10.56% 100.669 100
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IModel Performance

e Table 1: Model Comparison
Shows MSE, MAE, and R? for each model.
o CatBoost achieved minimum MSE and highest R? score.

Table 1: Minimisation Metric: EDP

| Conclusion

e Dynamic power capping using machine learning significantly improves
energy efficiency and thermal control with minimal performance loss.

e Enables smarter, greener supercomputing practices.

e Future work: Extend to multi-GPU systems and new architectures for
broader applicability.
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