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Next Steps
Major Shortcomings:
• Binary classification
• Single-prompting approach
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Motivation

Dataset Design Decisions

Research Questions

RQ2: Source Code Classification

RQ1: Roofline Understanding

Conclusions

Trend 1: Large Language Models (LLMs) are becoming ubiquitous in Software Development.

Trend 2: Not many Performance Analysis sub-fields using LLMs for GPU execution profiling/analysis  

Trend 3: 
• New GPU hardware is becoming increasingly inaccessible (due to datacenter demand) 
• Existing LLM-based GPU-code optimization works assume hardware access for profiling
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LLM optim. 
suggestions
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Typical LLM-based code optimizers:

Idea: Can LLMs predict GPU code performance without the need for profiling?
Trend 1
Trend 2
Trend 3

Problem: LLMs are traditionally BAD at regression tasks

Solution: Focus on a simple classification task instead!

• Execution Time
• FLOP/s
• Cache Misses

Possible Metrics:
• Bytes Read/Written
• FLOP/Byte
• Instructions/Cycle
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Figure credit: SAM WILLIAMS Roofline Lecture

Bandwidth-bound

Roofline Performance Model:

(BB) (CB)

How well can LLMs classify the Arithmetic Intensity (AI) of GPU codes?

Source 
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Kernel 
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“bandwidth-bound (BB)”
or

“compute-bound (CB)”

LLM

RQ1 (Baseline Roofline Classification)
• Given the GPU Roofline specs and an explicit AI value, can an LLM correctly classify the 

value as BB/CB?
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Built + Profiled:
170 CUDA + 170 OpenMP 
HeCBench Codes

NVIDIA RTX 
3080 GPU

Balance Point

1) Concatenate 
each kernels’ 
source files for 
prompting

2) Profile 1st execution 
of one kernel-per-code

3) Balance dataset w.r.t: 
token count, language, AI class
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RQ1 Prompting Template (w/ CoT)

Question

Optional 
CoT

Response

Target 
Query

• All models have a reasonably-good 
understanding of AI

• Reasoning models have good 
prediction accuracy w/ and w/out CoT

• 2 examples was often sufficient

Findings

• 120 CB + 120 BB prompts
• Random Rooflines + AI values
• 2, 4, and 8-shot examples
• Fixed temp = 0.1, top_p = 0.2 
• Evaluation metric: accuracy

Experimental Setup

[omitted context-setting beginning of prompt]

RQ2 Prompting Template (see paper for full prompt)

GPU 
specs

Pseudo-code 
examples

Exec 
specs

• 170 CB + 170 BB CUDA/OMP codes
• 2-shot examples
• Fixed temp = 0.1, top_p = 0.2
• Evaluation metric: accuracy

Experimental Setup

• Non-reasoning models are akin to a coinflip 
• Similar CUDA/OMP prediction accuracy 
• Room for improvement with o3-mini-high 

achieving highest accuracy of 64%

Findings

• SoTA LLMs do understand the Roofline Model for GPU performance analysis

• SoTA LLMs can predict parallel code performance – when limited to classifying 
Arithmetic Intensity (AI) of CUDA/OpenMP programs

• Reasoning-equipped LLMs (e.g.: o3-mini-high) offer significantly better 
classification accuracy when compared to non-reasoning LLMs

Arithmetic Intensity
(FLOP/Byte)

FLOP Count Bytes 
Read/Written

What if the LLMs could 
estimate these values for us?

🧐

Target Name Empirical 
FLOP Count

LLM-Estimated 
FLOP Count % Diff

resize-cuda 16779307 16777216 0.012 %

zerocopy-cuda 1050389 1048576 0.17 %

iso2dfd-cuda 54419825 53196468 2.24 %

nlll-cuda 6006 6273 4.44 %

backprop-cuda 3080240 3080192 0.001 %

We currently have some success in applying 
Question Decomposition to estimate FLOPs
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Source Code LLM task 1
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LLM task 3
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Perf. Metrics
SPFLOP (FP32), 
DPFLOP (FP64),
INTOP, 
AI for each kernel

RQ2 (Source Code Classification)
• Given the source code, necessary execution specs, and minimal instructions, can an LLM 

correctly classify the program as BB/CB?

“bandwidth-bound (BB)”
or

“compute-bound (CB)”
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Roofline Specs

Results:

Results:

https://crd.lbl.gov/assets/Uploads/roofline-intro.pdf
https://github.com/zjin-lcf/HeCBench

