
CUT

CUT

CUT

CUT

CUT

CUT CUT CUT CUT CUT

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-POST-

Can Large Language Models Predict Parallel Code Performance?
Gregory Bolet1, Giorgis Georgakoudis2, Harshitha Menon2, Konstantinos Parasyris2,

Niranjan Hasabnis3, Hayden Estes1, Kirk Cameron1, Gal Oren4
1Virginia Tech (VT), 2Lawrence Livermore National Laboratory (LLNL), 3Code Metal AI, 4Technion & Stanford University

QR
CODE
HERE

Next Steps
Major Shortcomings:
• Binary classification
• Single-prompting approach

Acknowledgements
This work was funded in part by NSF awards:

#1838271 VarSys: Managing Variability in High-Performance Computing Systems
#1939076 iLORE: Computer Systems Performance Integrated Lineage Repository

Motivation

Dataset Design Decisions

Research Questions

RQ2: Source Code Classification

RQ1: Roofline Understanding

Conclusions

Trend 1: Large Language Models (LLMs) are becoming ubiquitous in Software Development.

Trend 2: Not many Performance Analysis sub-fields using LLMs for GPU execution profiling/analysis

Trend 3:
• New GPU hardware is becoming increasingly inaccessible (due to datacenter demand)
• Existing LLM-based GPU-code optimization works assume hardware access for profiling

Unoptimized
Code

Profile
Performance

LLM optim.
suggestions

Update
Code

Typical LLM-based code optimizers:

Idea: Can LLMs predict GPU code performance without the need for profiling?
Trend 1
Trend 2
Trend 3

Problem: LLMs are traditionally BAD at regression tasks

Solution: Focus on a simple classification task instead!

• Execution Time
• FLOP/s
• Cache Misses

Possible Metrics:
• Bytes Read/Written
• FLOP/Byte
• Instructions/Cycle

sentiment
analysis

spam
detection

Proven LLM
Classification Tasks

Arithmetic Intensity (AI)
Bandwidth/Compute

Boundedness

Proposed
Classification Task

Figure credit: SAM WILLIAMS Roofline Lecture

Bandwidth-bound

Roofline Performance Model:

(BB) (CB)

How well can LLMs classify the Arithmetic Intensity (AI) of GPU codes?

Source
Code

Kernel
Launch
Params

Exec
Params

GPU
Roofline

Specs

“bandwidth-bound (BB)”
or

“compute-bound (CB)”

LLM

RQ1 (Baseline Roofline Classification)
• Given the GPU Roofline specs and an explicit AI value, can an LLM correctly classify the

value as BB/CB?

ht
tp

s:
//g

ith
ub

.c
om

/z
jin

-lc
f/H

eC
Be

nc
h

Built + Profiled:
170 CUDA + 170 OpenMP
HeCBench Codes

NVIDIA RTX
3080 GPU

Balance Point

1) Concatenate
each kernels’
source files for
prompting

2) Profile 1st execution
of one kernel-per-code

3) Balance dataset w.r.t:
token count, language, AI class

Fe
w

-s
ho

t E
xa

m
pl

es

RQ1 Prompting Template (w/ CoT)

Question

Optional
CoT

Response

Target
Query

• All models have a reasonably-good
understanding of AI

• Reasoning models have good
prediction accuracy w/ and w/out CoT

• 2 examples was often sufficient

Findings

• 120 CB + 120 BB prompts
• Random Rooflines + AI values
• 2, 4, and 8-shot examples
• Fixed temp = 0.1, top_p = 0.2
• Evaluation metric: accuracy

Experimental Setup

[omitted context-setting beginning of prompt]

RQ2 Prompting Template (see paper for full prompt)

GPU
specs

Pseudo-code
examples

Exec
specs

• 170 CB + 170 BB CUDA/OMP codes
• 2-shot examples
• Fixed temp = 0.1, top_p = 0.2
• Evaluation metric: accuracy

Experimental Setup

• Non-reasoning models are akin to a coinflip
• Similar CUDA/OMP prediction accuracy
• Room for improvement with o3-mini-high

achieving highest accuracy of 64%

Findings

• SoTA LLMs do understand the Roofline Model for GPU performance analysis

• SoTA LLMs can predict parallel code performance – when limited to classifying
Arithmetic Intensity (AI) of CUDA/OpenMP programs

• Reasoning-equipped LLMs (e.g.: o3-mini-high) offer significantly better
classification accuracy when compared to non-reasoning LLMs

Arithmetic Intensity
(FLOP/Byte)

FLOP Count Bytes
Read/Written

What if the LLMs could
estimate these values for us?

🧐

Target Name Empirical
FLOP Count

LLM-Estimated
FLOP Count % Diff

resize-cuda 16779307 16777216 0.012 %

zerocopy-cuda 1050389 1048576 0.17 %

iso2dfd-cuda 54419825 53196468 2.24 %

nlll-cuda 6006 6273 4.44 %

backprop-cuda 3080240 3080192 0.001 %

We currently have some success in applying
Question Decomposition to estimate FLOPs

Compiler
Optimization

Debugging
Assistants

Log Parsing HPC Advising
Tools

Source Code
Transpilation

Source Code
Optimization

Source Code LLM task 1

LLM task 2

LLM task 3

FLOP
Estimate

Perf. Metrics
SPFLOP (FP32),
DPFLOP (FP64),
INTOP,
AI for each kernel

RQ2 (Source Code Classification)
• Given the source code, necessary execution specs, and minimal instructions, can an LLM

correctly classify the program as BB/CB?

“bandwidth-bound (BB)”
or

“compute-bound (CB)”

LLM

Pe
rf.

 (F
LO

P/
s)

AI (FLOP/Byte)

GPU Peak Perf.

Max B
andwidth

Random Point

(X FLOP/Byte, Y FLOP/s)

Roofline Specs

Results:

Results:

https://crd.lbl.gov/assets/Uploads/roofline-intro.pdf
https://github.com/zjin-lcf/HeCBench

