Weight-Sharing NAS with
Architecture-Agnostic Intermediate
Representation

Presenter: Mahdi Samani

[OWA STATE UNIVERSITY Department of Computer Science | |

High-
Performance
Computing
(HPC)

Software Analytics
&
Pervasive Parallelism
Lab

d The Laboratory for Software Analytics and Pervasive Parallelism (SwWAPP)
2 Investigates the challenges that advance state-of-the-art in building reliable and efficient data-
driven applications utilizing Al/analytical methods and HPC
d SwAPP lab is primarily focused on the intersection of HPC (parallel computing & HPC) and Al
(Data Science) and includes
1 Efficient and Scalable Learning and Inference
2 High Performance Deep Learning
1 Software analytics (Al for HPC & Cyberinfrastructure)

[OWA STATE UNIVERSITY Department of Computer Science |

Challenges: Resource-Heterogeneous Machine Learning

Resources and Capabilities Vary Among Different Entities, Impacting
Deep Neural Networks’ (DNNs) Performance

Train/Depon :m wal

40GB 16GB 8GB
10%° FLOPs 1012 FLOPs 10° FLOPs
{Inference . _ !
nrerence 10ms 70ms 2s :
o datency)

[OWA STATE UNIVERSITY Department of Computer Science |

Research Objective

Goal: Specialize the DNNs and Improve the Resource Efficiency without
Significant Compromise Model Performance

i :
40GB 16GB 8GB
10%° FLOPs 10%? FLOPs 10° FLOPs

[OWA STATE UNIVERSITY Department of Computer Science |

Neural Architecture Search With Supernet

A Well-trained Weight-Sharing Supernet can Generate a Huge Number of
High-performance Subnets and Fit for a Wide-range of Constrains

im CPU q4loTE
(a) VIT Top-1 ImageNet Acc vs. Params 40GB 16GB 8GB
82 102° FLOPs 1012 FLOPs 10° FLOPs

(=]
o

O
o e‘,;a\ 33% Parameter !
‘\o
ViT-Base
297
\
R.G“a\n fof N

ViT-Base
—w— CP-WIT
—e— L-1 Pruning

=~
o

Top-1 Accuracy (%)
~J ~J
B o

-~
L=

~J
o

50 60 70 80 90
Number of Parameters (Millions)

Subnets Extragtion Simultaneously delivery a set of Pareto Frontier models

 No Retraining or Finetuning!

L Subnets are High-performance

Single Stage
Training

Weight-Sharing
Cai et al. Once for All: Train One Network and Specialize it for Efficient Deployment Su pernet
Yu et al. BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models

[OWA STATE UNIVERSITY Department of Computer Science |

Weight-Sharing Supernet Training Objective
Construct A Weight-Sharing Supernet Requires:
Jointly Train Potential Weight-Sharing Subnets and Minimize the Global Loss

/ @O @@@ c’ammg

; CPU
N c{% 4%} @search Pareto@ € Deploy to Target

Weight-Sharing \‘E’ j Frontier Subnet Resource Constraint
Supernet ‘Subnets Sample Space (No Retraining)

alidation Loss Subnets Architecture
Supernet Wnghts (§ﬂaredS

Weights)

S“ Loyql(F((Wo, Subnet;))

Subnet;|€EA

fd

W*

Subnet Extraction
Rules/Heuristics

[OWA STATE UNIVERSITY Department of Computer Science |

Neural Architecture Search With Supernet

After Weight-Sharing Supernet is Well-trained, Search for
Pareto Frontier Subnets for Target Resource Constraints

cry

QSearch Pareto € Deploy to Target
i Frontier Subnet Resource Constraint
(No Retraining)

Weight-Sharing
Supernet

Subnets Sample Space

) Resource)
Evaluation Performance Overhead Resource Constraint

LA
@]

Subnet® = arg max —val*F(Wo,Subneti)) s.t. |R(subnet;)

Subnet;€/

[OWA STATE UNIVERSITY Department of Computer Science |

Subnet Representation Challenge

In weight sharing supernet, subnet representation requires Architecture-Specific
Handcraft Rules/Heuristics

--
3

>

¢ Architecture-Specific :
Supernet Handcraft T Subnet

| |
| |
: ' : '
| |
| Subnet | 4% : Subnet |
: Extractio I : Extraction :
|
| I ' |
: ' : '
| I ' |

[OWA STATE UNIVERSITY Department of Computer Science |

Hierarchical Computational Graph Intermediate Representation (IR)

We Propose Modeling DNNs as Hierarchical Graph Intermediate Representation (IR)
dHigh-level Abstraction of DNNs

UArchitecture-agnostic

dUnify and Simplify the Model Architecture Modification

JEasily Reconstruct to Executable Model

Hierarchical
Computational
Graph IR
PyTorch
Model
l .
Hierarchical Graph Vi €Y. Node M oo Pw Weight State
) ode Metadata Mapping’ Dictionary
gl = (vl' gl: Dl) {Pmoa ¢comp» Gw: Pelastic}

[OWA STATE UNIVERSITY Department of Computer Science |

Topology Modeling

We Propose Modeling DNNs as Hierarchical Graph Intermediate Representation

(IR)

Node: Computational Module (nn.Module)

Edge: Model Forward-propagation Direction

--

Module 3

!

Output

[OWA STATE UNIVERSITY Department of Computer Science |

https://pytorch.org/docs/stable/generated/torch.nn.Module.html

Topology Modeling

Pytorch model are defined as nested computational graph modules
(i.e.,nn.Module), which can be modeling as hierarchical graph

Take ViT as an example

(vit): ViTModel(
(embeddings): ViTEmbeddings(
(patch_embeddings): ViTPatchEmbeddings(

) e = = = == = = -
(dropout): Dropout(p=0.0, inplace=False) [L e — e e
| — 0 e = = e Em Em = _=—
(encoder): ViTEncoder(| I l | . I
(layer): ModuleList(| I | I Multi-Head [
(0-11): 12 x ViTLaver(Self-Attention;
(attention): ViTSdpaAttention(I I I |
mbeddings [
) & I I sub-Modules I
(intermediate): Linear(I I |l MLP 1 I
i Ll \/iT | oviord l tl I
(output): Linear(| I I ' | | [
e I : I I MLP 2 :
(layernorm_before): LayerNorm(I I I | |
(768,), eps=le-12, elementwise_affine=True) ViT Layer 2 I
(layernorm_after): LayerNorm(I I I |
(768,), eps=le-12, elementwise affine=True) | I [I LayerNorm |
)) = e e e e e] e e o o o =] e = = = =
) - == == - rFe—_———_——_—— -
(layernorm): LayerNorm((768,), eps=le-12, elementwise_affine=True) e e e e e o] b e - - = = -]
)
(classifier): Linear(in_features=768, out_features=10, bias=True) Level 1 Computational Graph Level 2 Computational Graphs Level 3 Computational Graphs

[OWA STATE UNIVERSITY Department of Computer Science |

https://pytorch.org/docs/stable/generated/torch.nn.Module.html

Node Metadata for Module Reconstruction

Each node contains a metadata dictionary.

Modules can be Reconstructed via the Metadata Dictionary

e e = = e =

e ===] L=

. T I . T I |] I

" I : I | Multi-Head

Node ID: 5, : : | : : Self-Attention;

Type: ViTEncoder, .

mbeddin [

Sub-Modules ID: [9, 27,..], ! gs: l : Sub-Modules :: |

Parent1D: 7, g ISub-ModuIes': : I : MLP1 |

Residual ID: None, I oder] VIiT Layer 1 | : I

Next Module ID: 235, ¢ : : : | MLP 2 ,

Input Dim: 768 i I | I : I

Output Dim: 768 : Llassifier 1 : VIT Layer 2, | ,

Param Tensors: ... I I |
i] s I l I LayerNorm

Node Metadata-Dictionary "L ______ '; L ______ -;

Level 1 Computational Graph Level 2 Computational Graphs Level 3 Computational Graphs

[OWA STATE UNIVERSITY Department of Computer Science |

Subnet Extraction with IR
Two Types of Subnet Extraction in Weight-sharing Supernet:

(1) Structural Weights Pruning and (2) Module-wise pruning.

Subnet Graph R Subnet (nn-Module)
2 IS
¥ e Node ID: ..., :
Module i 1% Parent ID: [...], Model Module i
Children ID: [...],. Reconstructor :
l : Module Type: ViTlLayer, : v
Module i+1 Module Init Args: {...} ‘| Module i+1
: Elastic Config: {...} :
L .. [Output Dim: 768 512 §
Module i+2 | Module i+2
| Modify Node Metadata |

--

[OWA STATE UNIVERSITY Department of Computer Science |

Subnet Extraction with IR
Two Types of Subnet Extraction in Weight-sharing Supernet:

(1) Structural Weights Pruning and (2) Module-wise pruning.

Graph IR achieves Module-wise Pruning Simply via Edge Contraction

--
--
.....

. S

Input Input R » Node ID: 5,
: : e Type: ViTEncoder,
e Sub-Modules ID: [9, 27,...],

Parent ID: 7,

Module 1 Module1 [R oo
...... Next Module ID: Module 2

. : Input Dim: 768
Module 2 » Output Dim: 768
Subnet Param Tensors: ...
v : : :
Module 3 Module 3 Node Metadata-Dictionary
.................. Output .. Output

'''''
--

[OWA STATE UNIVERSITY Department of Computer Science

Subnet Extraction with IR

To Guarantee the Subnets are Executable, Two Conditions Must Satisfied:

(1) Node Connectivity (2)Dimensions compatibility

--
.....

Input “‘,.lnpu.t
5 E . Butput Dim: 768
Module 1 Module1 1+
Module 2 Module 2 |
v : p R -
Miodule's ; Module 3
l l Node Metadata-Dictionary
.................. Output . Output .

Isolated Nodes Exists Output Dim Match Next Node’s Input Dim

[OWA STATE UNIVERSITY Department of Computer Science |

Efficient Subnet Sample Strategy With IR

We noticed that there exists Many of Subnets in the Sample Space are Redundant
We call it Subnet Motifs.
Subnet Motifs Definition: Subnets have the same topology

O~ A TTTTTTTTT T T ' Identical Topology and
E%Z m %ﬁz: / Resource Constraint

Subnet fITEEE ISR s !

Extraction %@ % E

_________________ We only need the best
| I performance subnets in a
__________________ motif

Subnet” = arg max_ Eyqi(F(Wy,Subnet)) s.t.| R(subnet;) < 7|

Our Objective: Pre-identify Subnet in Each Motif, and only Focus on one Salient
Subnet in a Motif

[OWA STATE UNIVERSITY Department of Computer Science |

Efficient Subnet Sample Strategy

We noticed that there exists Many of Subnets in the Sample Space are Redundant
We call it Subnet Motifs.
Subnet Motifs Definition: Subnets have the same topology

P - Hierarchical
O 5
.... Graph IR : Salient Subnet
..: oo Topology Prioritization
o Representation

Our Idea: We prioritize the most salient subnets (based on weight tensor magnitude) in the
given subnet Motif

[OWA STATE UNIVERSITY Department of Computer Science |

Fork-join parallel training

Weight-sharing Nature Raises Write-After-Write dependency when training multiple
subnets in parallel

.
*

S e e e e o o - Gradient Queue o
: Asynchronous / 1

: |

: @ Dequeue and I \ / | \

: Apply Aggregated | |

: Gradient A —— 7 € £nqueue and

Detach to Host

* *

S ThreadRank 1. i
Shared Weights | @ Initialize} = FT LT - @ Parallel
State Dictionary SubnetS E Thl‘ead Rank N Training /T
ngrr:r;h:;al Subnet Data : :
P Shard Subnet Gradients :
Weight_sharlng ennnannn ereeeenneesnea D evree(GPUSu)-q—-hreads -----------------------

if we train multiple subnets concurrently, the weights shared by the
subnets can be overwritten by the latest trained subnet

[OWA STATE UNIVERSITY Department of Computer Science |

Results — Architecture Agnostic Compression -ViT

With Proposed IR, our method adapt to a wide range of neural architecture type
without specialization rules. — Result on ViT

Table 1. Image classification results on ImageNet benchmarks.

Method #Param #Param| ValAcc. A Acc. FLOPs FLOPs |
ViT-B [7] 86.6 - 80.98 - 17.6G 0%
DeiT-B [25] 86.6 0% 81.84 +0.86 17.6G 0%
AutoFormer-B [3] 54M 37.6% 82.40 +1.42 11.0G 37.5%
T2T-ViT-24 [34] 64M 26% 82.30 +1.32 13.8G 21.6%
ViT-Slim [2] 52.6M 39.2 82.40 +142 10.6G 39.8%
SAVIT [4] 42 40% 82.75 +1.77 10.6G 39.8%
VTP-B [35] 47T 45.4% 80.70 -0.28 10G 43.2%
PS-ViT-B [24] 86.6 0% 81.5 +0.52 9.8G 44.3%
PreNAS [27] 54M 37.6% 82.6 +1.62 11G 37.5%
UVC [32] N/A N/A 80.57 -0.41 8G 54%
OSF (Ours) 5™ 33.7% 82.27 +1.29 10.02G 42 %

53M 38.8% 81.04 +0.06 8.7G 50%

We compared with ViT specialized compression method, pruning method, and AutoML methods.
OSF shows competitive compression performance on ViT with State-of-the-art!

[OWA STATE UNIVERSITY Department of Computer Science

Results — Architecture Agnostic Compression — CNN

With Proposed IR, our method adapt to a wide range of neural architecture type
without specialization rules. — Result on CNN

Table 2. CNN Model Image classification results on ImageNet benchmarks.

Method #Param #Param.,] ValAcc. A Ace. FLOPs FLOPs|

ResNet-50 [10] 97.8MB - 76.13 - 3.8G 0%

ResNet-18 [10] 44.7 MB 54.3% 69.75 -6.38 1.81G 52.4%
AutoPruner [13] 68.5MB 30% 73.05 -3.08 2.64G 35%
Meta-Pruning [18] 48.9MB 50% 73.4 -2.73 1.9G 50%
SFP [11] 68.5MB 30% 77.37 +1.24 2.2G 42%
AutoSlim [29] 51.8MB 47% 74.00 -2.13 1.9G 50%
GNN-RL [33] 48.7MB 50% 74.28 -1.85 1.78G 53%
EagleEye [15] 48.9MB 50% 74.20 -1.93 1.9G 50%
FPGM [12] 68.5MB 30% 74.83 -1.30 1.8G 53%
NISP [31] 55MB 44% 75.24 -0.89 2.1G 44 %
ThiNet-50 [19] N/A N/A 71.01 -5.12 3.41G 11 %
PFP-B [16] N/A N/A 65.65 -10.48 1.03G 73%
DepGraph [8] N/A N/A 75.83 -0.30 1.86G 51%
DMCP [23] N/A N/A 76.23 +0.10 2.8G 26%
ATO [28] N/A N/A 76.07 -0.06 1.48G 61%
OSF (Ours) 40MB 59.1% 76.13 0 1.33G 65%

We compared with CNN specialized compression method, pruning method, and AutoML methods.
OSF shows competitive compression performance on ViT with State-of-the-art!

[OWA STATE UNIVERSITY Department of Computer Science |

Results — Architecture Agnostic Compression —- SAM

With Proposed IR, our method adapt to a wide range of neural architecture type
without specialization rules. — Result on Segment Anything

Table 3. Image segmentation task with Segment Anything

Method Dataset #Param #Param| mloU A mloU.

SAM [14] 90M - 69.20 -
OSF COCO 47TM 47.8% 75.30 +6.10
OSF 49M 45.6% 75.44 +6.24

SAM [14] 90M - 73.00 -
OSF SA1B 44M 51.1% 74.67 +1.67
OSF 53M 41.1% 77.24 +4.24

[OWA STATE UNIVERSITY Department of Computer Science |

Results — Architecture Agnostic Compression — NLP

With Proposed IR, our method adapt to a wide range of neural architecture type
without specialization rules. — Result on Question Answering

Table 4. Question-answering benchmark results on BERT Architecture (Encoder-only Transformer)

Param Group Method #Param #Param | F1 AF1 FLOPs| Latency Latency|

~150M BERT-L [6] 334M - 89.49 - - 16.28ms -

OSF (Ours) 166M 168M 89.73 +0.24 49% 7.88ms 8.40ms

BERT-B [6] 109M 225M 84.45 -5.04 72% 6.10ms 10.18ms

100 - 150M RoBERTa [17] 124M 210M 90.28 +0.79 65% 9.25ms 7.03ms

OSF(Ours) 104M 230M 89.51 +0.02 72% 8.00ms 8.28ms

OSF (Ours) 93M 241M 89.50 +0.01 76% 7.94ms 8.34ms

DistillBERT [22] 7™ 257TM 82.25 -71.24 89% 2.84ms 13.44ms

<100M OSF (Ours) 75M 259M 88.74 -0.75 83% 4.48ms 11.80ms

OSF(Ours) 45M 289M 80.72 -8.77 93% 2.79ms 13.49ms

[OWA STATE UNIVERSITY Department of Computer Science

Thank you
If you have question, feel free to
reach out to:
yusx@iastate.edu

	Default Section
	Slide 1: Weight-Sharing NAS with Architecture-Agnostic Intermediate Representation
	Slide 2: SwAPP Lab

	Untitled Section
	Slide 3: Challenges: Resource-Heterogeneous Machine Learning
	Slide 4: Research Objective
	Slide 5: Neural Architecture Search With Supernet
	Slide 6: Weight-Sharing Supernet Training Objective
	Slide 7: Neural Architecture Search With Supernet
	Slide 8: Subnet Representation Challenge
	Slide 9: Hierarchical Computational Graph Intermediate Representation (IR)
	Slide 10: Topology Modeling
	Slide 11: Topology Modeling
	Slide 12: Node Metadata for Module Reconstruction
	Slide 14: Subnet Extraction with IR
	Slide 15: Subnet Extraction with IR
	Slide 16: Subnet Extraction with IR
	Slide 17: Efficient Subnet Sample Strategy With IR
	Slide 18: Efficient Subnet Sample Strategy
	Slide 19: Fork-join parallel training
	Slide 21: Results – Architecture Agnostic Compression –ViT
	Slide 22: Results – Architecture Agnostic Compression – CNN
	Slide 23: Results – Architecture Agnostic Compression – SAM
	Slide 24: Results – Architecture Agnostic Compression – NLP
	Slide 25: Thank you If you have question, feel free to reach out to: yusx@iastate.edu

