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Carbon Emissions of Computing

Climate change impacts

Tropical Cyclones:

Wind and Rain

1 5 - 40A) of Global Carbon

Emissions is from ICT.

Consumer device: Data centers: Connectivity networks:
24-40% 20-48% 16-40%

Smartphones

E===0

Computers

Source: Adapted from WIK-Consult and Ramboll (2021) to include estimates by Minges, Mudgal, and Decoster (forthcoming) based on analysis of
reported emissions by more than 150 international digital companies.
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Carbon Intensity and Carbon Emissions
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Energy demand and supply mix
changes across space.
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Carbon Savings across Cloud Data Centers
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O Regions
O Coming Soon

Spatial shifting saves XX carbon footprint,
while incurring YY latency.
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How about Edge Data Centers?

Is it possible to save carbon while
meeting low-latency requirements?

How much does carbon intensity vary

within mesoscale regions?

How prevalent are these types of
mesoscale variations ?
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Carbon Intensity Variations and Latency
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Significant differences in the carbon intensity of electricity at mesoscale distances
with XX ms network latency.
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Mesoscale Analysis across Continents
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More than 78% of the edge locations in Europe and North America see carbon
intensity differences exceeding 20% within a radius of 1000 km.
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CarbonEdge Overview
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CarbonEdge: Carbon-aware framework for edge computing
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Carbon-aware Edge Placement

Incremental carbon-aware placement

Optimize the application placement and server activation

Consider the heterogeneity of servers

Carbon emissions from application operation and server activation

ILP for incremental application placement
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Application operation Server activation
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CarbonEdge Implementation
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Experimental Setup
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Mesoscale Regional Edge Deployment
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In mesoscale edge settings, CarbonEdge can highly optimize the carbon emissions resulting
in 39.4% and 78.7% carbon savings for Florida and Central EU, respectively.
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Continental-scale CDN Edge Deployment
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By shifting the demand towards low carbon zones, CarbonEdge decreases carbon emissions
by 49.5% and 67.8% for the US and Europe, respectively, while increasing the round-trip
latency by less than 11 ms.
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Impact of Latency Tolerance
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For a 10 ms increase in latency, CarbonEdge derives 28% and 44.8% carbon savings in the
US and Europe, respectively.
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The seasons’ changes in carbon intensity highly affect the carbon savings that change by up
to 10% across months. The intertwined relations between regions change across seasons,

resulting in up to 3x change in resource allocation.
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Impact of Demand and Capacity
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Changes in demand and capacity can impact carbon savings based on the carbon intensity of
their origin.
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Impact of Heterogeneity
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By interplaying the differences in energy efficiency, carbon intensity, and processing speed,
CarbonEdge can reduce carbon emissions by 98%, 79%, and 63% compared to the Latency-
aware, Intensity-aware, and Energy-aware baselines, respectively.
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Carbon-Energy Trade-off
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The inherent carbon-energy trade-off is pronounced in heterogeneous edge settings. By
augmenting the objective function with energy-awareness, CarbonEdge can maintain 97.5%
of its carbon savings while decreasing energy consumption by 67%.
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System Overhead
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Complete computation within 3 seconds with 400 servers and 140 applications, consuming
less than 200 MB memory.
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Conclusion

 Mesoscale Carbon Analysis reveals significant spatial variations in
carbon intensity across edge data centers.

« CarbonEdge: a carbon-aware framework with an incremental application
placment optimization algorithm.

- Extensive evaluation on a mesoscale regional edge testbed and
continental-scale edge simulations demonstrates its effectiveness.

Carbon savings outweigh latency overhead in edge computing!
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