
TSUE: A Two-Stage Data Update Method for

an Erasure-Coded Cluster File System

Zheng Wei1, Jing Xing1, Yida Gu12, Wenjing Huang12, Dong Dai3, Guangming Tan1, Dingwen Tao1

1Sate Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

2University of Chinese Academy of Sciences, Beijing, China.

3University of Delaware, Newark, DE, USA

Email: weizheng@ncic.ac.cn

 taodingwen@ict.ac.cn

2

Background: Erasure Code is widely adopted by…

Storage Scale: the volume of global data soared & the

scale of data in the AI4S era

IDC. Worldwide IDC Global DataSphere Forecast, 2024–2028: AI Everywhere, But Upsurge in Data Will Take Time, 2014.5.

BA C

FE H P1 P2

Replica Erasure Code

BA C

BA C

A DB A

D

B

C C

C

GE FP2 P1

D

D

D

B A D

G

H

➢ Replica: storage overhead 200%

➢ Erasure Coding: storage overhead 12.5-50%Erasure

Reliability guarantee:

 the regular failure of commercial components

Number of Failed Nodes over a Month

The erasure code mechanism is increasingly adopted by both

open-source and commercial storage systems!

Method Capac

ity

HDD Node All-Flash Node

HDD

400$/16TB

Storage Node

3000$/Node

U.2 SSD

1200$/7.6TB

Storage Node

9000$/node

Replica 3EB 78643200$ 49152000$ 539267657$ 337042285$

Erasure

Coding

1.5EB

4+2
39321600$ 24576000$ 269633828$ 168521152$

1.15EB

28+4
30146560$ 18841600$ 206719268$ 129199542$

Sathiamoorthy M, Asteris M, Papailiopoulos D, et al. Xoring elephants: Novel erasure codes for big data[J]. arXiv preprint arXiv:1301.3791, 2013.

Background: The Issues of Erasure Coding

ENCODING DECODING

The Invertibility of Full-Rank Matrices

B

I

𝐵‘ ∗ 𝐵’ −1 = 𝐼

A k-order invertible matrix enables the construction of any K blocks within a

stripe using K original data blocks, and vice versa.

Data Stripe

RECONSTRUCT

UPDATE

INCREMENTL

UPDATE

Read=

=

Write

Read Write

× 5 × 3

× 1 × 3+

+ Net+ × 8

Net+ × 3

UPDATING

Mainly Update Approaches:

➢ Reconstruct Update

➢full stripe coverage

➢ Incremental Update

➢small grained coverage

Unable to support updates of original data, instead of log or copy-on-write(COW), but introduce overhead!

The Analysis of Access Characteristic

The Scene of Updating

In the MSR-Cambridge trace, over 90% of
operations are update operations, and more
than 60% of these updates have a granularity
no larger than 4 KB.

Update
Writes(%)

<4KB(%) <16KB(%)

Ali-Cloud 75 46 60

Tencent
Cloud

69 69 88

In the block traces from Alibaba Cloud and
Tencent Cloud, over 69% of operations are
update operations, among these, 46%-69%
have a size no exceeding 4KB.

In real-world applications, a large number of fine-grained update operations are present.

Incremental update method is suited for fine-grained update seene.

The Analysis of Update Operations

The Locality characteristics of the update

In Tencent cloud block trace, It has significant characteristics of temporal and spatial locality.

The Utilization of Spatial Locality

The Analysis of Update Operations

The Locality characteristics of the update

In Tencent cloud block trace, It has significant characteristics of temporal and spatial locality.

The Utilization of Spatial LocalityThe Utilization of Temporal Locality

Intra-Block Inter-Block

Merge

Merge by Calculation

Merge

Data Blks: Merge Direct, Parity Blks: Merge with XOR

The Challenge of Incremental Update Method

 High Update Latency

➢ The lengthy update path

➢ The inherent nature of random access

✓ HDD: millisecond latency (seeking + rotation + data transfer)

✓ SSD: there is big gap between sequential access and random access

 Low Update Throughput

➢ Fine-grained random-access constrains the enhancement of update throughput

✓ HDD: there is a performance gap of two orders of magnitude

✓ SSD: there is a performance gap of several times

 Consistency Issue due to Parity Log

✓ Log loss and prolonged log recycling lead to secondary data loss

✓ The exist of log will prolong the recovery efficiency

 Low Lifespan

 HDD: random-access cause frequently head movement

 SSD: fine-grained random-access leads to frequently erase of flash

The SOTA Update Method

 FO

➢ Data block & Parity block: In-place update

➢ Lengthy update path

➢ Random-access

➢ no additional read/write ops & no log files

 PL

 Data block: in-place update

 Parity block: introduce parity log,

➢ Transfer random-access into sequential access

➢ Log was protected by write_lock, concurrent→serial write

➢ Log has impact on recovery→consistency issue

 PLR

 Data block: in-place update

 Parity block: reserved place to keep parity log in blocks

➢ avoid random-access during recycle process of log

➢ Log appending like concurrent random-access (introduced)

➢ More disk fragment (space management issue)

 PARIX

 CoRD

The SOTA Update Method

 PARIX (designed for data warehouse)

 Data Block: in-place update (need to transfer update request)

 Parity Block: like PL, but Parity log keep original data

➢ Suit for data warehouse, which present temporal locality
➢ Forward update request to parity log directly

➢ Bypass the calculation of parity delta into recycle of parity

log

➢ Avoid partial read overhead of data blocks

➢ Avoid calculation overhead during in-place update

➢ Introduce 2x network latency

➢ Need bigger space to store log data

 CoRD (designed for minimizing update traffic)

 Data Block: in-place update, introduce buffer

 Parity Block: Parity Log

➢ Utilize collector to collects and aggregates the deltas of

updated parts to reduce update traffic

➢ Calculate parity delta of multiple intersection updates for

same location across various data blocks within same stripe

➢ a single log buffer → bottleneck
➢ overlook parallelism and throughput considerations

The SOTA Update Method: summary

◼ Data Block: in-place update → time-consuming process to calculate parity delta

◼ Parity Block:

CONCLUSION

1. Long Latency: in-place update of data blocks is time-consuming process (long update path).

2. Low Throughput-issue:

 2.1 Random-issue: The local characteristics of data access have not been fully utilized.

 2.2 Lack of concurrency design: single log is performance bottleneck and is not suitable for high-concurrency

scenarios involving operations such as append and recycle

3. Necessary of Log:

 3.1. Logs is meaningful: transform random I/O operations into sequential ones, improving appending performance!

 3.2. Logs is also harmful: lead to consistency problems.

 3.3. Replica is best choice: the update mechanism of the replication is the simplest and most efficient!

4. network traffic issue(CoRD): Merge calculations during forwarding process reduce the volume of data transferred

 PARIX:
➢ Introduce 2x latency for scene without temporal locality

➢ More log space to store forwarded original data

 CoRD:
➢ Overlooks parallel and throughput consideration

✓ Reduce network traffic by calculation

 FO: in-place update
➢ HDD unfriendly, SSD friendly

 PL: parity log
➢ Consistency issue

➢ Appending is protected by write-lock

 PLR: parity log with reserved space
➢ Appending ops like concurrent random-access

➢ Recycling and appending are mutually exclusive

➢ More fragment

Overview of TSUE

 Reduce random-access involving in update process

➢ Utilize Spatial-temporal locality to reduce random-access overhead in three-layer log structure

 TSUE: Two-Stage Data Update Strategies for Erasure Code

➢ Two-stage update process with swift recycle mechanism

✓ introduce data log: instead of in-place update of data blocks → Low Latency

✓ recycle log asynchronous & log content is temporal → no consistency introduced by the log

➢ 3-layer Log: organized by data characteristic & spatial-temporal locality & recycle pipeline → high throughput & lifespan

• Data log & delta log & parity log

➢ Log Pool Structure: high concurrent between appending and recycling & adaptive workload-aware

TSUE: Two-Stage Update method for Erasure Code

 Two-Stage Data Update Method with Swift Recycle Mechanism

➢ Front-End(Synchronous appending)

➢ Back-End(Asynchronous recycling)

➢ introduce data log for the data block
➢ Convert random-access into sequential access

➢ instead of in-place update of data blocks

• Avoid time consuming process of perform

write-after-read process to calculate data delta

(original & new)

➢ Swift recycle mechanism (vs PL PLR PARIX CoRD)

➢ recycle log asynchronous

➢ log content is temporal

• vs PL PLR PARIX CoRD

✓ Log is recycled rapidly and timely

✓ minimal influence on data recovery

Traditional update process TSUE’ update process

Front-End update process Back-End update process

Low Latency: Transfer time-consuming write-after-read process into sequential appending

TSUE: utilize 3-layer Log to reduce random I/O

 3-Layer Log： Data log & delta log & parity log

➢ data characteristic & spatial-temporal locality & recycle pipeline → high throughput & lifespan

➢ Raw data

➢ Overwrite directly according on order

➢ Used to calculate data delta

➢ Data delta

➢ Perform XOR with each other

➢ Same for m parity blocks in same stripe

➢ Parity delta (𝜕𝑖𝑗 ∗ 𝐷𝑎𝑡𝑎_𝑑𝑒𝑙𝑡𝑎)

➢ Perform XOR with each other

➢ Specially for each parity block

➢ Pipeline in Layer-Log

➢ Reduce the number of

I/OS step by step

➢ Parallel in log units

➢ Parallel in blocks

➢ Two-level index

➢ Organize updates in

blocks

Principle of update process in data log and pairty log Princple of update process in delta log

Data Characteristic Recycle Pipeline

➢ Spatial Locality

➢ Completely overlapping

➢ Partial overlap

➢ Adjacent in position

➢ Close in location

➢ Temporal Locality

➢ Completely overlapping

➢ Raw data * [parity|data] delta

Spatial-Temporal Locality

Same location in multi blocks

TSUE: Log Pool structure

 Adaptive FIFO-based log pool structure

➢ FIFO-based & adaptive & quota-schedule

➢ Multiple log units in log pool

➢ Each log unit equipped with two-level index

➢ The insert update record is organized by index

➢ Just one log unit is active

➢ Multiple filled full log units are recycled in parallel

➢ Blocks are mapped into single recycle engine based on hash

adaptive update process The schedule of quota for log pool

FIFO-based Log pool structure High Lifespan

FIFO-based log pool structure

➢ Minimize the occupation of system memory by logs

➢ The number of log units is according on the workload

➢ Access skew

➢ Break down quotas to the light-load log

pool

TSUE achieve maximum update performance with limited memory resources.

Implements of TSUE

➢ ECFS: Erasure-coded file system (self-develop)

➢ Client: write(encoding), read(degrade read)

➢ OSD: block storage, update

➢ MDS: file/entry management, location management

➢ TSUE

➢ Implemented in OSD

➢ Data log, delta log, parity log
➢ Data log: 2 replica(SSD), 3 replica(HDD)

➢ Delta log: keep data delta, 1 for each disk

➢ Parity log: keep parity delta, 1 for each disk

➢ Distinguish write or update in Client
➢ HDD: 1 logpool/disk, 8 recycle_thread, 2-20 log units

➢ SSD: 4 logpool/ssd, 8 recycle_thread, 2-20 log units

➢ Step1(append of data log): append update request into data log and its’ replica, insert the index, update is finished;

➢ Step2(recycle of data log): FULL data log is appended into recycle list; obtain merged and combined data from index, read old

data, calculate data delta and forward the corresponding delta log(local: k, k+1);

➢ Step3(recycle of delta log): obtain multiple data deltas for same location across multiple blocks in same stripe, calculate M parity

delta and forward corresponding parity log (without storage access)

➢ Step4(recycle of parity log): obtain overlapping parity deltas, and read the old parity data in big arrangement, and calculate the

new parity data.

Architecture and Configuration

Update Procedure

Evaluation

➢ 2 intel Xeon 8380 CPU, 256GB memory(3200MT/s 16GB*16) ; 400GB Intel SATA SSD

➢ 200Gb/s Mellanox NIC (but, connected by 25Gb/s ethernet switch)

Chamemleon Cloud Environment(16 nodes)

TSUE demonstrates the best overall performance.

When the M value increases, the performance advantage becomes more pronounced,

TSUE is well-suited for scenarios where the M value is greater than 2.

TSUE+'s performance improves steadily with an increasing number of clients.

Evaluation

Log Recycle Overhead Breakdown Analysis

Memory usage

Baseline: Utilizes DataLog and ParityLog to recycle data.

• O1: Utilizes spatio-temporal locality in data logs.

• O2: Utilizes spatio-temporal locality in parity logs.

• O3: Introduces log pool structure to manage log.

• O4: Configure 4 log pools for each SSD.

• O5: Introduces DeltaLog to reduce network load

1.Just only in the log structure which support append and

recycle in parallel, the spatial-temporal locality can be

utilized effectively to improve recycling performance.

2. Delta log obtain 30% improvement by reduce network

traffic.

The update performance initially rises, subsequently

declines, and ultimately stabilizes after 18 seconds.

The data suggests that the influence of the back-end log

recycle process on update performance is negligible.

In memory-constrained environments, the number of log

units is set to 4, to reach higher performance with a

maximum memory allocation of 1 GB for a single SSD.

Evaluation

1.TSUE exhibits the lowest number of read/write and

overwrite operations among all methods.

2. The network traffic generated by TSUE is only about

60% of that by other mechanisms, and slight more than that

of CoRD.

3. The read/write volume of TSUE is bigger than that of

PARIX and CoRD due to the existence of 3-layer log.

4. The overwrite volume generated by TSUE is only high

than that of PARIX which without recycle log.

In average, the log resided in memory is 10 seconds, the

short time indicate that, the two replica of data log is

enough to ensure the data reliability.

Evaluation

➢ 2 intel E2630 CPU, 32GB memory; 2TB SATA HDD

➢ 56Gb/s Mellanox NIC (but, connected by 40Gb/s ethernet switch)

Physical Cluster with HDD(16 nodes)

The performance of TSUE is best in all SOTA methods for HDDs cluster.

Compare with other update mechanism, TSUE has not impact on recovery performance.

Conclusion

TSUE introduces a data log to divide the update process into a two-stage procedure, replacing the time-

consuming in-place update of data blocks, thereby achieving lower latency.

TSUE utilizes spatial-temporal locality to reduce the number of random I/O operations through a 3-layer log

structure, thereby improving recycling performance.

TSUE designs an adaptive, FIFO-based log pool structure to support high concurrency between log appending

and log recycling, which is the optimal structure for leveraging the spatial-temporal locality of requests.

Tests have shown that the TSUE mechanism is applicable not only in SSD environments but also in HDD

environments, and is effective in scenarios with a large M value.

Evaluation

Thank you!
Any questions are welcome!

Contact Zheng Wei: weizheng@ncic.ac.cn
 Dingwen Tao: taodingwen@ict.ac.cn

