

Top-Down SBP: Turning Graph Clustering Upside Down

VIRGINIA TECH → AMD
MIT LINCOLN LAB
MIT LINCOLN LAB
VIRGINIA TECH

FRANK WANYE
VITALIY GLEYZER
EDWARD KAO
WU-CHUN FENG

JULY 22, 2025 34TH ACM INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING (HPDC)

www.stonybrook.edu

Forecast

Bottom-Up Stochastic Block Partitioning (SBP)

Top-Down Stochastic Block Partitioning (SBP)

Introduction

- Worldwide data collected doubling every 2 years
- Much of this data is relational \rightarrow graph representation
- Groups of strongly connected vertices correlate to functional groups within data
- Graph clustering: process of finding such groups

Motivation

Applications across many domains

- Accurate graph clustering is difficult
- Difficulty highlighted by collaborative efforts, e.g., Graph Challenge [1], sponsored by IEEE/Amazon/MIT

Fast vs. Accurate Graph Clustering

- Optimal graph clustering is NP-hard \rightarrow solved via heuristics
- Two classes of heuristics: descriptive and inferential^[1]

Enable <u>accurate</u> graph clustering in large graphs by accelerating inferential graph clustering methods

Descriptive Methods

- **Encompass many** commonly used heuristics
- Fast
- Lower quality solutions
- Prone to overfitting

Inferential Methods

- Fit statistical models to data
- Less commonly used
- Slow
- Higher quality solutions
- Robust against overfitting

Partitioning (SBP)

OVERVIEW

- 1. Introduction to Graph Clustering
- 2. Background & Contributions
- 3. Approach
 - a) Top-Down SBP
 - b) Accelerated Top-Down SBP
- 4. Results on Real-World Graphs
- 5. Summary and Future Work

SBP Algorithm Overview

Statistical Model

Quality Function

Optimization Algorithm

Stochastic Blockmodel (SBM)^[1]

- Generative model
- Models the graph in relation to connectivity between clusters (blocks)

		Cluster			
		0	1	2	3
	0	12	2	3	1
Cluster	1	1	20	2	4
Clu	2	3	1	13	5
	3	2	4	1	17
			A		

Number of edges from cluster 3 to cluster 1

Description Length (H)^[2]

- Quality function for inference over **SBM**s
- Number of bits needed to encode SBM
- $H = f(graph \ size, blockmodel \ parameters)$
- Lower H =
 - Better compression
 - Lower entropy → more stability
 - Better quality of clusters

SBP Algorithm Overview

Statistical Model

Quality Function

Optimization Algorithm

Iterative, agglomerative, Markov chain Monte-Carlo (MCMC) based optimization of description length $H^{[1,2]}$

 $O(E \log^2 E)$ E: number of graph edges

Contributions

Computational Profile

Runtime Breakdown by Iteration on 1M vertex graph

Challenges

- Random memory access patterns
- Row *and* column-wise indexing
- Front-heavy computation
- Top-Down computation approach
 - 7.7X speedup over Bottom-Up
 - 4X lower memory usage

MCMC Computation

Dependencies

Execution

- Inherently sequential optimization technique^[1]
- State at time T depends on *all* previous timesteps
- Integration of Top-Down approach with prior SBP parallelization efforts
 - 13.2X speedup over accelerated Bottom-Up

Contributions

OVERVIEW

- 1. Introduction to Graph Clustering
- 2. Background & Contributions
- 3. Approach
 - a) Top-Down SBP
 - b) Accelerated Top-Down SBP
- 4. Results on Real-World Graphs
- 5. Summary and Future Work

Top-Down SBP: Overview

Approach

- Replicate overall algorithm structure of SBP
- Block merges replaced with block splits
- Splits accepted/rejected based on change in SBM description length
- Same algorithmic complexity: O(E log² E)

Top-Down SBP: Overview

Approach

- Replicate overall algorithm structure of SBP
- Block merges replaced with block splits
- Splits accepted/rejected based on change in SBM description length
- Same algorithmic complexity: O(E log² E)

Top-Down SBP: Overview

Approach

- Replicate overall algorithm structure of SBP
- Block merges replaced with block splits
- Splits accepted/rejected based on change in SBM description length
- Same algorithmic complexity: $O(E \log^2 E)$

Block-Splitting Heuristic

Splitting Heuristics

- Uniform random
- Two competing snowball samples
- One snowball sample
- Snowball sampling based on connectivity

Split Initializations

- Uniform random
- Degree-weighted random initialization
- Selecting the two highest-degree vertices

Exploring Splitting Heuristics

Accuracy (Normalized Mutual Information)

Step 1: Select Two Starting Vertices For New Clusters

Step 2:
Assign Frontier Vertices
to Clusters Based on
Connectivity

Cluster B

Step 3:

Identify New

Frontier Vertices

Cluster A
Cluster B

Best Heuristic: Connectivity snowball + random initialization

- Idea: clusters should be split based on vertex locality
- Two vertices are randomly chosen to initialize the new clusters

Single-Threaded Results

Graphs

 Official IEEE/Amazon/MIT Graph Challenge synthetic datasets

Num. Vertices	Num. Edges	Num. Clusters
1,000	8,032	11
5,000	51,157	19
20,000	473,329	32
50,000	1,187,682	44
200,000	4,754,406	71
1,000,000	23,772,977	125

Experiments

- Running single-threaded Bottom-Up SBP and Top-Down SBP
- Ookami cluster
 - 32 GB memory, Fujitsu A64FX CPUs

Little-to-no difference in accuracy

Up to 7.7X speedup over Bottom-Up SBP

Fewer MCMC iterations and fewer MCMC vertex moves

results to the second of the second

Up to 4.1X lower memory usage

OVERVIEW

- 1. Introduction to Graph Clustering
- 2. Background & Contributions
- 3. Approach
 - a) Top-Down SBP
 - b) Accelerated Top-Down SBP
- 4. Results on Real-World Graphs
- 5. Summary and Future Work

Accelerated Top-Down SBP: Overview

• Bottom-Up SBP has been successfully accelerated using a combination of the following^{[1][2]}:

Shared-Memory Parallelization (**DSBP**)^[2] + Multi-Node Parallelization (**EDiSt**)^[3] + Sampling (**SamBaS**)^[4]

• We adapt these approaches from Bottom-Up SBP to Top-Down SBP

^[1] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. An Integrated Approach for Accelerating Stochastic Block Partitioning. In Proceedings of the 27th IEEE High Performance Extreme Computing Conference (HPEC), 2023.

^[2] Ahsen Uppal, Thomas Rolinger, Howie Huang. Decontentioned Stochastic Block Partition. In Proceedings of the 27th IEEE High Performance Extreme Computing Conference (HPEC), 2023.

^{17 /} APPROACH

^[3] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. Exact Distributed Stochastic Block Partitioning. In Proceedings of the 25th IEEE International Conference on Cluster Computing (CLUSTER), 2023.

Shared-Memory Parallelism

Model Optimization Phase

- Batched asynchronous Gibbs method
 - Embarrassingly parallel within each batch

Model Search Phase

Requires pre-computing subgraphs to reduce memory usage

Multi-Node Parallelism

EDiSt: Exact Distributed **Stochastic Block Partitioning**

- Data replication → minimize broken dependencies → helps retain accuracy
- Difference between Bottom-Up and Top-Down SBP: amount of communication in model search phase

Bottom-Up SBP

• Block-level operation: O(#blocks) data transferred

Top-Down SBP

• Vertex-level operation: O(#vertices) data transferred

Active sets chosen so as to equalize a) number of vertices and b) total vertex degrees across MPI ranks for load balancing

Sampling

SamBaS: 4 step sampling approach to accelerating SBP

Integration: Run Top-Down SBP in step 2

- ✓ Reduces memory and compute cost of initial iterations
- ✓ Flexible → SBP & fine-tuning can be replaced with accelerated variants

Accelerated Top-Down SBP Results

Graphs

Official IEEE/Amazon/MIT Graph Challenge synthetic datasets

Num. Vertices	Num. Edges	Num. Clusters
1,000	8,032	11
5,000	51,157	19
20,000	473,329	32
50,000	1,187,682	44
200,000	4,754,406	71
1,000,000	23,772,977	125

Hardware

Ookami cluster: 1-4 nodes, 48 cores per node, 32 GB memory, Fujitsu A64FX CPUs

OVERVIEW

- 1. Introduction to Graph Clustering
- 2. Background & Contributions
- 3. Approach
 - a) Top-Down SBP
 - b) Accelerated Top-Down SBP
- 4. Results on Real-World Graphs
- 5. Summary and Future Work

Top-Down SBP: Real-World Graph Results

Dataset Name	Num. Vertices	Num. Edges
cit-HepPh	34,546	421,534
soc-Slashdot0902	82,168	870,161
web-BerkStan	685,230	7,600,595
amazon0601	403,394	10,162,164
citPatents	3,774,768	16,518,947
cu-2005	862,664	18,733,713
wiki-topcats	1,791,489	28,508,141
wikipedia-20070206	3,515,067	45,013,315

Hardware

 Ookami (1-64 nodes, 48 cores per node, 32 GB memory, Fujitsu A64FX CPUs)

Little-to-no difference in accuracy

Accelerated Top-Down SBP is up to 13.2X faster than equivalent Bottom-Up SBP, and up to 403X faster than sequential Bottom-Up SBP

Process graphs up to 4.4X larger on same hardware

OVERVIEW

- 1. Introduction to Graph Clustering
- 2. Background & Contributions
- 3. Approach
 - a) Top-Down SBP
 - b) Accelerated Top-Down SBP
- 4. Results on Real-World Graphs
- 5. Summary and Future Work

Future Work

Sampling

Limitation: Large (30% - 50%) sample sizes needed to maintain accuracy

Potential Solution: Alternative data reduction methods like coresets could help reduce required sample size

Parallelism

Limitation: Poor parallel efficiency

Potential Solution: MPI all-toall primitives → MPI singlesided primitives GPU acceleration

Memory Usage

Limitation: High memory usage limits graph size

Potential Solution: Data distribution in multi-node implementation could alleviate memory bottlenecks

Summary

Bottom-Up Clustering

- Traditional approach to SBP
- Clusters merge over time
- **✗** High memory requirements
- **★** Many MCMC moves
- Slow compute

Top-Down Clustering

- Novel approach
- Clusters split over time
- ✓ Lower memory requirements
- ✓ Fewer MCMC moves
- ✓ Faster compute
- ✓ Accelerated with sampling + parallel and distributed computing

Process graphs up to 4.1X larger on same hardware