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Forecast
Bottom-Up Stochastic Block Partitioning (SBP)

Sampling

Top-Down Stochastic Block Partitioning (SBP)

Parallel & 
Distributed

Sampling Parallel & 
Distributed

This 
Talk Up to 13.2 

speedup, similar 
accuracy
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Introduction

• Worldwide data collected doubling every 2 years

• Much of this data is relational → graph representation

• Groups of strongly connected vertices correlate to 

functional groups within data

• Graph clustering: process of finding such groups
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Motivation

Applications across many domains

• Accurate graph clustering is difficult

• Difficulty highlighted by collaborative efforts, e.g., Graph Challenge [1] , 

sponsored by IEEE/Amazon/MIT

[1] Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Siddharth Samsi, William 

Song, Diane Staheli, and Steven Smith. Streaming graph challenge: Stochastic block partition. In Proceedings of the 2017 IEEE High Performance Extreme Computing 

Conference (HPEC), 2017.
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Fast vs. Accurate Graph Clustering

• Optimal graph clustering is NP-hard → solved via heuristics

• Two classes of heuristics: descriptive and inferential[1]

S
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Quality

Descriptive 

Methods

Inferential 

Methods

GoalDescriptive Methods

▪ Encompass many 

commonly used heuristics

▪ Fast 

▪ Lower quality solutions

▪ Prone to overfitting

Inferential Methods

▪ Fit statistical models to data

▪ Less commonly used

▪ Slow 

▪ Higher quality solutions

▪ Robust against overfitting

Stochastic Block 

Partitioning (SBP)

Enable accurate graph clustering in large graphs 

by accelerating inferential graph clustering methods

[1] Tiago P. Peixoto. Descriptive vs. inferential community detection in networks: pitfalls, myths, and half-truths. Cambridge University Press, 2023.
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SBP Algorithm Overview

Stochastic Blockmodel (SBM)[1]

• Generative model

• Models the graph in relation to connectivity 
between clusters (blocks)

Description Length (H)[2]

• Quality function for inference over SBMs

• Number of bits needed to encode SBM

• 𝐻 = 𝑓(𝑔𝑟𝑎𝑝ℎ 𝑠𝑖𝑧𝑒, 𝑏𝑙𝑜𝑐𝑘𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

• Lower H =

• Better compression

• Lower entropy → more stability

• Better quality of clusters

Cluster
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Statistical Model Quality Function Optimization AlgorithmStatistical Model Quality Function Optimization Algorithm

[1] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. In Physical Review E, vol 83, no 1, 2011.

[2] Tiago P. Peixoto. Parsimonious Module Inference in Large Networks. In Physical Review Letters, vol 110, no 14, 2013.
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SBP Algorithm Overview

Iterative, agglomerative, Markov chain Monte-Carlo (MCMC) 

based optimization of description length H [1,2]

Input 

Graph

Initial 

Assignment

Model Search

(via Block Merges)

Model Optimization

(via Markov chain Monte Carlo)
Output

Iteration iIteration 0

Golden ratio search for number of clusters

Clusters merge together
Vertices change cluster 

membership

𝑂(𝐸 log2 𝐸)
E: number of graph edges

Statistical Model Quality Function Optimization Algorithm

[1] Tiago P. Peixoto. Parsimonious Module Inference in Large Networks. In Physical Review Letters, vol 110, no 14, 2013.

[2] Tiago P. Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. In Physical Review E, vol 89, no 1, 2014.
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Contributions

Computational Profile MCMC Computation
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Global Iteration

• Random memory access patterns

• Row and column-wise indexing

• Front-heavy computation

T=

3

x4

at 

t=

4

T=4 T=5 T=6

Execution

Dependencies

• Inherently sequential optimization technique[1]

• State at time T depends on all previous 

timesteps

Runtime Breakdown by 

Iteration on 1M vertex graph

Challenges

Contributions

• Top-Down computation approach

• 7.7X speedup over Bottom-Up

• 4X lower memory usage

• Integration of Top-Down approach with prior 

SBP parallelization efforts

• 13.2X speedup over accelerated Bottom-Up

[1] Darren J Wilkinson. Parallel Bayesian Computation. In Erricos John Kontoghiorghes, editor, Handbook of Parallel Computing and Statistics, 2005.



OVERVIEW

1. Introduction to Graph Clustering

2. Background & Contributions

3. Approach
a) Top-Down SBP
b) Accelerated Top-Down SBP

4. Results on Real-World Graphs

5. Summary and Future Work



APPROACH11 /

Top-Down SBP: Overview

Approach

• Replicate overall algorithm 

structure of SBP

• Block merges replaced 

with block splits

• Splits accepted/rejected 

based on change in SBM 

description length

• Same algorithmic 

complexity: O(E log2 𝐸)
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Top-Down SBP: Overview

Approach

• Replicate overall algorithm 

structure of SBP

• Block merges replaced 

with block splits

• Splits accepted/rejected 

based on change in SBM 

description length

• Same algorithmic 

complexity: O(E log2 𝐸)
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Block-Splitting Heuristic

Exploring Splitting Heuristics

Best Heuristic: Connectivity snowball + random initialization

• Idea: clusters should be split based on vertex locality

• Two vertices are randomly chosen to initialize the new clusters

Ideal 

Heuristic

Splitting Heuristics

• Uniform random

• Two competing 

snowball samples

• One snowball sample

• Snowball sampling 

based on connectivity

Split Initializations
■ Uniform random
● Degree-weighted 

random initialization

 Selecting the two 
highest-degree 
vertices
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APPROACH15 /

Single-Threaded Results
Graphs

• Official IEEE/Amazon/MIT Graph 

Challenge synthetic datasets

Experiments

• Running single-threaded Bottom-

Up SBP and Top-Down SBP

• Ookami cluster

• 32 GB memory, Fujitsu 

A64FX CPUs

Little-to-no difference in accuracy

Up to 7.7X speedup over Bottom-Up SBP

Fewer MCMC iterations and fewer MCMC vertex moves 

→ faster model optimization time

Up to 4.1X lower memory usage



OVERVIEW

1. Introduction to Graph Clustering

2. Background & Contributions

3. Approach
a) Top-Down SBP

b) Accelerated Top-Down SBP

4. Results on Real-World Graphs

5. Summary and Future Work



APPROACH17 /

Accelerated Top-Down SBP: Overview
• Bottom-Up SBP has been successfully accelerated using a combination of the following[1][2]:

Shared-Memory Parallelization (DSBP)[2] + Multi-Node Parallelization (EDiSt)[3] + Sampling (SamBaS)[4]

• We adapt these approaches from Bottom-Up SBP to Top-Down SBP

Multi-Node Compute Cluster

Multi-Core Cluster Node Multi-Core Cluster Node

Thread

SamBaS

EDiSt

DSBPDSBP

Main ThreadThread

Thread

Thread Thread

Thread Thread

[1] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. An Integrated Approach for Accelerating Stochastic Block Partitioning. In Proceedings of the 27th IEEE High 

Performance Extreme Computing Conference (HPEC), 2023.

[2] Ahsen Uppal, Thomas Rolinger, Howie Huang. Decontentioned Stochastic Block Partition. In Proceedings of the 27th IEEE High Performance Extreme Computing Conference 

(HPEC), 2023.

[3] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. Exact Distributed Stochastic Block Partitioning. In Proceedings of the 25th IEEE International Conference on Cluster 

Computing (CLUSTER), 2023.

[4] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. SamBaS: Sampling-Based Stochastic Block Partitioning. In IEEE Transactions on Network Science and Engineering 

(TNSE), vol 11, no.3, 2024.
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Shared-Memory Parallelism

Input Graph

Subgraphs for each block

Pre-computed for re-use across threads

Multiple split proposals 

for each block

Best splits

Result GraphParallel Step Sequential Step

#tasks = #blocks

#tasks = #proposals * #blocks

Extract 

Blocks

Propose 

Splits

Sort Splits 

by delta H

Apply 

Best Splits

Model Optimization Phase

• Batched asynchronous Gibbs method
• Embarrassingly parallel within each 

batch

Model Search Phase

• Requires pre-computing subgraphs to 

reduce memory usage
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Multi-Node Parallelism

EDiSt: Exact Distributed 
Stochastic Block Partitioning

• Data replication → minimize broken 
dependencies → helps retain accuracy

• Difference between Bottom-Up and 
Top-Down SBP: amount of 
communication in model search phase

Bottom-Up SBP

• Block-level operation: O(#blocks) 
data transferred

Top-Down SBP

• Vertex-level operation: O(#vertices) 
data transferred

Active Set

Rank 2

MPI All-to-all Communication 

synchronizes blockmodel at 

regular intervals

Active Set Active Set

Rank 1 Rank 3

Graph is replicated across MPI ranks

Active sets chosen so as to equalize a) number of vertices and b) total vertex 

degrees across MPI ranks for load balancing

MPI = Message Passing Algorithm)
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Sampling

✓Reduces memory and compute cost of initial iterations

✓Flexible → SBP & fine-tuning can be replaced with accelerated variants

SamBaS: 4 step sampling approach to accelerating SBP

Integration: Run Top-Down SBP in step 2
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Accelerated Top-Down SBP Results

NMI = Normalized Mutual Information

7.7X speedup 4.9X speedup 6.9X speedup 4.0X speedup

+ Single-Node 

Parallelism 

+ Multi-Node 

Parallelism 
+ Sampling

Graphs

Official IEEE/Amazon/MIT 

Graph Challenge synthetic 

datasets

Hardware

Ookami cluster: 1-4 nodes, 48 

cores per node, 32 GB memory, 

Fujitsu A64FX CPUs
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Sequential

Overall speedup over sequential Bottom-Up SBP: 220X
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Top-Down SBP: Real-World Graph Results

Hardware

• Ookami (1-64 nodes, 48 cores per 

node, 32 GB memory, Fujitsu 

A64FX CPUs)

Little-to-no difference in accuracy

Accelerated Top-Down SBP is up to 13.2X faster 

than equivalent Bottom-Up SBP, and up to 403X 

faster than sequential Bottom-Up SBP

Process graphs up to 4.4X larger on same 

hardware
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Future Work

Sampling

Limitation: Large (30% - 50%) 
sample sizes needed to 
maintain accuracy

Potential Solution: Alternative 
data reduction methods like 
coresets could help reduce 
required sample size

Parallelism Memory Usage

Limitation: Poor parallel 
efficiency

Potential Solution: MPI all-to-
all primitives →MPI single-
sided primitives
GPU acceleration

Limitation: High memory usage 
limits graph size

Potential Solution: Data 
distribution in multi-node 
implementation could alleviate 
memory bottlenecks

Out Of

Memory
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Summary
Bottom-Up Clustering

Top-Down Clustering

• Traditional approach to SBP

• Clusters merge over time

 High memory requirements

 Many MCMC moves

 Slow compute

• Novel approach

• Clusters split over time

✓ Lower memory requirements

✓ Fewer MCMC moves

✓ Faster compute

✓ Accelerated with sampling + 

parallel and distributed computing

200,000 vertices
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Bottom-Up SBP Top-Down SBP

Little-to-no difference in accuracy

S
p

ee
d

u
p Up to 220X speedup (synthetic) and 403X 

speedup (real-world) over sequential Bottom-

Up SBP baseline

Process graphs up to 4.1X larger on same hardware

Questions?
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