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Introduction

Total worldwide data in zettabytes (ZB)

* Worldwide data collected doubling every 2 years

* Much of this data is relational = graph representation

* Groups of strongly connected vertices correlate to
functional groups within data

e il " - * Graph clustering: process of finding such groups
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Motivation

Applications across many domains

Networking Finance Bioinformatics Social Media

Recommendation
Intrusion Detection Fraud Detection Drug Discovery Systems

* Accurate graph clustering is difficult
« Difficulty highlighted by collaborative efforts, ¢.g., Graph Challenge [,
sponsored by IEEE/Amazon/MIT

4 / I N T R O D U C T | O N [1] Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Siddharth Samsi, William
Song, Diane Staheli, and Steven Smith. Streaming graph challenge: Stochastic block partition. In Proceedings of the 2017 IEEE High Performance Extreme Computing
Conference (HPEC), 2017.



Fast vs. Accurate Graph Clustering

* Optimal graph clustering is NP-hard = solved via heuristics
« Two classes of heuristics: descriptive and inferentiallll

Enable accurate graph clustering in large graphs

by accelerating inferential graph clustering methods

4
Descriptive Methods Descriptive Inferential Methods
Methods
Encompass many - = Fit statistical models to data
commonly used heuristics é " Less commonly used
Fast , . v Inferential - Sl.OW . .
Lower quality sqlutlons Methods = Higher quapty solutloqs
Prone to overfitting Robust against overfitting
Quality Stochastic Block
5 / INTRODUCTION Partitioning (SBP)

[1] Tiago P. Peixoto. Descriptive vs. inferential community detection in networks: pitfalls, myths, and half-truths. Cambridge University Press, 2023.
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SBP Algorithm Overview

Stochastic Blockmodel (SBM)!1] Description Length (H)!?]
* Generative model * Quality function for inference over SBMs
* Models the graph in relation to connectivity * Number of bits needed to encode SBM
between clusters (blocks) » H = f(graph size, blockmodel parameters)
Cluster
 Lower H=
0123
* Better compression
0122 (3|1
g * Lower entropy = more stability
Sl1|1]20]2]4 |
3 * Better quality of clusters
Ol 213 |1[13]5
312141 |17

Number of edges from cluster 3 to cluster 1

7 / B A C K G R O U N D [1] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. In Physical Review E, vol 83, no 1, 2011.
[2] Tiago P. Peixoto. Parsimonious Module Inference in Large Networks. In Physical Review Letters, vol 110, no 14, 2013.



SBP Algorithm Overview

Iterative, agglomerative, Markov chain Monte-Carlo (MCMC) O(E log?E)
based optimization of description length H [1-2] E: number of graph edges
[teration 0 [teration 1
[ \
e ‘. o
Input Initial Model Search Model Optimization Outout
Graph Assignment (via Block Merges) (via Markov chain Monte Carlo) P
Vertices change cluster
Clusters merge together :
membership
8 / BACKGROUND Golden ratio search for number of clusters

[1] Tiago P. Peixoto. Parsimonious Module Inference in Large Networks. In Physical Review Letters, vol 110, no 14, 2013.
[2] Tiago P. Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. In Physical Review E, vol 89, no 1, 2014.



Contributions

Computational Profile MCMC Computation

Runtime Breakdown by Dependencies

Iteration on 1M vertex graph

2 35000 TN SN SN\

£ 20000 =4 | | T=5| | T=6
Challenges £ 15000 \_/4\_/4\/4\/4

S 10000

& 5000

g 0 Execution

7z 0 10 20

Global Iteration

* Random memory access patterns  + Inherently sequential optimization techniquel!!

* Row and column-wise indexing e+ State at time T depends on all previous
* Front-heavy computation timesteps
* Top-Down computation approach * Integration of Top-Down approach with prior
* 7.7X speedup over Bottom-Up SBP parallelization efforts
* 4X lower memory usage * 13.2X speedup over accelerated Bottom-Up

9 / BACKGROUND

[1] Darren J Wilkinson. Parallel Bayesian Computation. In Erricos John Kontoghiorghes, editor, Handbook of Parallel Computing and Statistics, 2005.
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Top-Down SBP: Overview

iteration O iteration i (search for optimal number of clusters)

I\

J\ )
Approach - |f|>
* Replicate overall algorithm

structure of SBP e ———
 Block merges replaced Input Graph 4 Assir;r:fnent »| Model Search > (via Marios Chzilr:n vazlzr:?eerarIO) 2 Output

with block splits

* Splits accepted/rejected
based on change in SBM
description length

* Same algorithmic
complexity: O(E log? E)

11 / APPROACH



Top-Down SBP: Overview

Approach

* Replicate overall algorithm
structure of SBP

* Block merges replaced
with block splits

* Splits accepted/rejected
based on change in SBM
description length

* Same algorithmic
complexity: O(E log? E)

12 |/ APPROACH

iteration O

I\

iteration i (search for optlmal number of clusters)

Input Graph

Initial

]

Model Optimization

Output

Assignment ) Model Search ) (via Markov Chain Monte-Carlo)
A 4
— Bottom-Up SBP
Initial Model Search
Assignment (via Block Merge)




Top-Down SBP: Overview

Approach

* Replicate overall algorithm
structure of SBP

* Block merges replaced
with block splits

* Splits accepted/rejected
based on change in SBM
description length

* Same algorithmic
complexity: O(E log? E)
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Output

iteration 0 iteration i (search for optimal number of clusters)
N [ )
[ | i: )i(: :%
Initial Model Optimization )
Input Graph Assignment ) Model Search ) (via Markov Chain Monte-Carlo)
Y Y
Top-Down SBP =1 Bottom-Up SBP
Initial Model Search | | Initial Model Search
Assignment (via Block Split) Assignment (via Block Merge)




Block-Splitting Heuristic

Splitting Heuristics Split Initializations

* Uniform random *  One snowball sample  m Uniform random x Selecting the two
 Two competing * Snowball sampling e Degree-weighted highest-degree
snowball samples based on connectivity random initialization ~ vertices
. . e . . Step 1: Step 2: _ Step 4:
EXplOI'lng Spllttlng Heuristics Select Two Starting Assign Frontier Vertices I deﬁﬁp I‘?Iéw Repeat Until All Vertices
Vertices For to Clusters Based on ity Ne Are Assigned to a
x - Frontier Vertices
a New Clusters Connectivity Cluster
7
=
= °
£
S
g 10!
5 Starting Vertex UnaSS|gned Vertex Frontier Vertex
>
= | Frontier Vertex | | ClusterA | [ Cluster A ] | ClusterA |
% ) | ClustrB. | | ClusterB | | ClusterB |
Q (] (] L] L] L (] o (] [
& x Best Heuristic: Connectivity snowball + random initialization
10° HHH » Idea: clusters should be split based on vertex locality

00 ez 040608 10 e Two vertices are randomly chosen to initialize the new clusters
Accuracy (Normalized Mutual Information)

14 / APPROACH



Single-Threaded Results

—8— Bottom-Up Top-Down
Graphs . /E g 10 | _gonge Nz . '/' \/_Eﬁ Lo? ./' ik
» Official IEEE/Amazon/MIT Graph S} v 3 g8 )
. ESE € 100 2 SEE o
Challenge synthetic datasets g2 RN 4 =5F 10 7
0.0
103 104 105 106 10° 10* 10° 10° 103 104 10° 10°
Num. Vertices Num. Edges  Num. Clusters \_ Num. Vertices A\ _ Num. Vertices A Num. Vertices /
1,000 8,032 13 5. = 2 1o N . 0\
5,000 51,157 19 _2y oloe ., ° @,
20,000 473,329 32 8§88 100 o7 =3 o %
, : SET £2 100 5 2
50,000 1,187,682 14 88 3 = o
, 0 0 =
200,000 4,754,406 7 10° 104 10° 10° 10° 10* 10° 10° 10° 10* 10° 10°
1,000,000 23772977 125 \_ Num. Vertices Num. Vertices /\ _ Num. Vertices /
Experiments

Little-to-no difference in accuracy

* Running single-threaded Bottom-
Up SBP and Top-Down SBP
* Ookami cluster
* 32 GB memory, Fujitsu
A64FX CPUs

Up to 7.7X speedup over Bottom-Up SBP

Fewer MCMC iterations and fewer MCMC vertex moves
—> faster model optimization time

Up to 4.1X lower memory usage

15 / APPROACH
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Accelerated Top-Down SBP: Overview

« Bottom-Up SBP has been successfully accelerated using a combination of the following![21:
Shared-Memory Parallelization (DSBP)[?] + Multi-Node Parallelization (EDiSt)!3! + Sampling (SamBaS)!4]

EDIiSt L
Multi-Core Cluster Node lrli

Multi-Node Compute Cluster

Multi-Core Cluster Node L_.__li
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* We adapt these approaches from Bottom-Up SBP to Top-Down SBP

[1] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. An Integrated Approach for Accelerating Stochastic Block Partitioning. In Proceedings of the 27th IEEE High
Performance Extreme Computing Conference (HPEC), 2023.
[2] Ahsen Uppal, Thomas Rolinger, Howie Huang. Decontentioned Stochastic Block Partition. In Proceedings of the 27th IEEE High Performance Extreme Computing Conference
(HPEC), 2023.

1 7 / A P P R O A C H [3] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. Exact Distributed Stochastic Block Partitioning. In Proceedings of the 25th IEEE International Conference on Cluster
Computing (CLUSTER), 2023.
[4] Frank Wanye, Vitaliy Gleyzer, Edward Kao, Wu-chun Feng. SamBaS: Sampling-Based Stochastic Block Partitioning. In IEEE Transactions on Network Science and Engineering



Shared-Memory Parallelism

Input Graph

DG 425ks = #blocks
Blocks
Model Optimization Phase

: Subgraphs for each block C%) 8;((}50 80,0
* Batched asynchronous Gibbs method Pre-computed for re-use across threads C&)

* Embarrassingly parallel within each

batch ks = #proposals * #blocks
Splits
Model Search Phase

 Requires pre-computing subgraphs to Multiple split proposals 809
1 P P 8 stap for each block C&O

reduce memory usage
1Y Has Sort Splits

by delta H

o | 82 825 850 820

Apply
Best Splits

Result Graph

'/ APPROACH



Multi-Node Parallelism

EDiSt: Exact Distributed
Stochastic Block Partitioning

* Data rephc-atlon > minimize broken Graph is replicated across MPI ranks

dependencies = helps retain accuracy ‘
» Differen n Bottom-

erence between Bottom-Up and Rank 1 Rank 2 Rank 3

Top-Down SBP: amount of

communication in model search phase
Bottom-Up SBP == ==
* Block-level operation: O(#blocks)

data transferred Active Set Active Set Active Set
Top-Down SBP t
* Vertex-level operation: O(#vertices) MPI All-to-all Communication

data transferred synchronizes blockmodel at

regular intervals

Active sets chosen so as to equalize a) number of vertices and b) total vertex
degrees across MPI ranks for load balancing

19/ APPROACH MPI = Message Passing Algorithm)



Sampling

SamBaS: 4 step sampling approach to accelerating SBP

Integration: Run Top-Down SBP in step 2

1) Sampling

¢

e

2) Stochastic
Block
Partitioning

Input Graph

Sampled
Subraph

Sampled
Subgraph
Memberships

3) Membership <
Propagation [ — _

|
~
| 1
L

Full Graph
Memberships

v"Reduces memory and compute cost of initial iterations

xb»\ 4} Membershlp é/«{ &

) Fine-tuning |

v'Flexible = SBP & fine-tuning can be replaced with accelerated variants

APPROACH

-..-"

Qutput




Accelerated Top-Down SBP Results

Graphs

Official IEEE/Amazon/MIT
Graph Challenge synthetic
datasets

Num. Vertices  Num. Edges  Num. Clusters

1,000 8032 11

5,000 al,157 19

20,000 473,329 32

S0, 000 1,187,682 44

2000, (b0 4,754,406 71

[T TR 23 772977 125
Hardware

Ookamiu cluster: 1-4 nodes, 48

cores per node, 32 GB memory,
Fujitsu A64FX CPUs

21 |/ APPROACH

NMI = Normalized Mutual Information

NMI
(Higher is Better)

Runtime (s)

—8— Bottom-Up Top-Down
+ Single-Node + Multi-Node
Sequential ] ] + Samplin
q Parallelism Parallelism piing
1.0 L 1.0 SR X 1.0 . 1.0
=R TR =N r=XT T A S XL X i<
0.5 0.5 05 0.5
0.0 0.0 0.0 0.0
103 10% 10.5 10° 10 10* 10° 10° 10° 10° 105 10° 108 104  10°  10°
Num. Vertices Num. Vertices Num. Vertices Num. Vertices
10° ° o 103 o
102 o 3 o E 102 /./ ! - v
o prg ® e
/s 1 / 101 / 10! 9
Lot /o 10 o o /,
0
® ./ 10 ./ —
10® 10% 10° 10° 103 10* 10° 10° 103 104 10° 10° 100 104 10°  10°

Num. Vertices

7.7X speedup

Num. Vertices

Num. Vertices

Num. Vertices

4.9X speedup 6.9X speedup 4.0X speedup

Overall speedup over sequential Bottom-Up SBP: 220X
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Top-Down SBP: Real-World Graph Results

Dataset Name Num. Vertices  Num. Edges - A'Ec:ith:; —— BottomUp — Igg'ozown >ampling 06;:_ False —®- TFUZB — ~
Cit-rnep S0cC-5las o] amazon wep-ber an
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—_ ., — o — 10 X, —_ R .
) - 0 0} \ B 10* % 0x-x-@-x-
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g 10° .\5,._,(,_,( pr g N g N il g X, o
o o o c X, S T c X. < 10 ~ c x.
Little-to-no difference in accuracy 2 o -y 2 100 X RageX R &V 2 10° [y
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Accelerated Top-Down SBP is up to 13.2X faster N Num. Nodes Num. Nodes Num. Nodes Num. Nodes | _/
) / eu-2005 wiki-topcats wikipedia-20070206 citPatents \
than equivalent Bottom-Up SBP, and up to 403X | =t e 10 e 10 [ ee el |me 10
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Process graphs up to 4.4X larger on same \ L4 L4 16 e L4 16 e L4 16 e
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23 / REAL-WORLD GRAPH RESULTS
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Future Work

Sampling

EO

O

Limitation: Large (30% - 50%)
sample sizes needed to
maintain accuracy

Potential Solution: Alternative
data reduction methods like
coresets could help reduce
required sample size

FUTURE WORK

Parallelism

40

20\

MPI %

Na-0—
0 ® o

103 10* 10° 10°
Num. Vertices

Limitation: Poor parallel
efficiency

Potential Solution: MPI all-to-
all primitives = MPI single-
sided primitives

GPU acceleration

Memory Usage

1000000 Vertices

Out Of
Memory

o
Loy

Limitation: High memory usage
limits graph size

Potential Solution: Data
distribution in multi-node
implementation could alleviate
memory bottlenecks



Bottom-Up SBP Top-Down SBP

Summary |

Bottom-Up Clustering

200,000 vertices |

=
o

°
o
o0

Traditional approach to SBP
Clusters merge over time
High memory requirements
Many MCMC moves

Slow compute

Little-to-no difference in accuracy

her is Better)
o o
=Y [o)]

Y

Normalized Mutual
Information

(Hi

0.0

X X X

Sequential Parallel Parallel Parallel Parallel
+Distributed +Distributed +Distributed
+Sampling +Sampling
+Top-Down

Top-Down Clustering Up to 220X speedup (synthetic) and 403X

speedup (real-world) over sequential Bottom-
H00 Up SBP baseline

Novel approach
Clusters split over time
Lower memory requirements

Fewer MCMC moves 0 —— I -
Sequential Parallel Parallel Parallel Parallel
Faster compute +Distributed +Distributed +Distributed

. . +S li +S li
Accelerated with sampling + S oo Down

parallel and distributed computing Process graphs up to 4.1X larger on same hardware
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