Virtualization So Light, it Floats!
Accelerating Floating Point
Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

Northwestern | JAb

Floating Point
Virtualization

There are several alternatives to Floating Point

- Al Model quantization: float8, bfloat16, etc.

- Posit/Unum, rationals, arbitrary precision floating point,
Bfloats, logarithmic arithmetic, ...

- A whole conference dedicated to this

\

32nd |[EEE International Symposium on Computer Arithmetic

ARITH 2025

e X O

El Paso, TX, USA. May 4-7, 2025.

https://www.arith2025.org/

Changing number systems will changes results.

200 bit :4 '°t" . Start
MPER oats

Switching to these systems is nontrivial

double op(float a, float b, float c) {
return a x b + c;
}

Switching to these systems is nontrivial

double op(float a, float b, float c) {
return a x b + c;
}

void mpfr_op(mpfr_t result, mpfr_t a, mpfr_t b, mpfr_t c) {
mpfr_mul(result, a, b, MPFR_RNDN); // result = a x b
mpfr_add(result, result, c, MPFR_RNDN); // result += c

The entire code structure needs to change!

double op(float a, float b, float c) {

return a x b + c;
Manually manage ‘'
memory lifetimes of
your humbers!

void mpfr_op(mpfr_t result, mpfr_t a, mpfr_t b, mpfr_t c) {
mpfr_mul(result, a, b, MPFR_RNDN); // result = a x b
mpfr_add(result, result, c, MPFR_RNDN); // result += c

Imagine needing to worry about
this in something like CESM!

We want scientists to be able to
experiment with these things

200 bit 64bit | giat
MPER ats

We want to write applications with the
semantics of hardware floating point

But have it execute using some
alternative arithmetic!

Floating Point Virtualizati

- Have the program think it is using
hardware floating point

- But swap it out, transparently throu
virtualization

HPDC'22)

hickw.io/papers/hpdc22.pdf

FPVM: Towards a Floating Point Virtual Machine

Peter Dinda Nick Wanninger Jiacheng Ma

Northwestern University

Northwestern University

Northwestern University

Alex Bernat Charles Bernat Souradip Ghosh

Northwestern University

Christopher Kraemer

Northwestern University

Abstract

Alternatives to IEEE floating point arithmetic have become all the
rage. Some extract more representational power out of the avail-
able bits. Others offer the potential for lower or higher precision
than is available in IEEE-compatible hardware. Even an “interface
to the real numbers” has recently been proposed. Using such al-
terative arithmetic systems within an existing scientific or other
significant codebase is a major challenge, however. We explore
how to address this challenge through virtualizing the IEEE float-
ing point hardware, specifically on x64. The goal of the floating
point virtual machine (FPVM) is to allow an existing application
binary o be seamlessly extended to support the desired alternative
arithmetic system with overheads determined by that system and
not the virtualization mechanisms. We describe the prospects, is-
sues, and tradeoffs for four different approaches for building FPVM:
trap-and-emulate, trap-and-patch, binary transformation, and IR
transformation. We then describe the design and implementation

Northwestern University

Northwestern University

Yehya Elmasry

Northwestern University

ACM Reference Form:
Peter Dinda, Nick Wanninger, Jiacheng Ma, Alex Bemat, Charles Bernat,
Souradip Ghosh, Christopher Kraemer, and Yehya Elmasry. 2022. FPVM:
Towards a Floating Point Virtual Machine. In Proceedings of the 31st Interna-
nal Symposium on High-Performance Parallel and Distributed Computing
ly 1, 2022, Minneapolis, MN, USA. ACM,
i pages. BpadoLorg/101146/3502181 3531469

ew York,

1 Introduction

Virtually all applications in scientific and engineering domains, as
well as applications built on machine learning techniques, make
extensive use of IEEE 754 floating point arithmetic (32, 33] through
its numerous implementations. Floating point has proven to be
extremely effective at enabling high performance while providing
behavior that is sensible to a knowledgeable developer.

Motivation: The preeminence of IEEE floating point hardware
implementations is being challenged along three fronts. First, al-
ternatives such as [26,37], BFloats(38), logarithmic

of our current design, which combines static binary
lation and trap-and-emulate execution. We evaluate our FPVM
implementation on several benchmarks, virtualizing them to use
posits and MPFR. Finally, we comment on kernel- and hardware-
level innovations that could further reduce overheads for floating
point virtualization.

CCS Concepts

- Software and its engineering — Operating systems; Vir-
ot i

arithmetic (3], and others [29, 43] potentially extract more useful
representational power out of the same number of bits, or have
range/precision tradeoffs that are more suitable for some modern
warkloads such as machine learing, The mond froc oityes

ing these mpmmmuun, as w ing point arith-
metic (for example in GNU MPFR [23] o libBF (7] [_1) at arbitrary
ns, including much higher precision than the hardware
ine ectly implements. Finally, there are proposals to rethink float-
ing point and related representations altogether in favor of an API
to the real numbers [11]. Such an APl would allow programmers

?

Arbitrary-precision arithmetic. to reason about their code using the rules of standard arithmetic
Keywords and achieve reasonable performance in many cases. This approach
(orhigher precison) mightaso mitgate te effcts of misunder-
floating point arithmetic, software development, e sbout ects of IEEE floating,
754 point [18, 20).
e .
i oy g A Fipres efits, using alternative arithmetic systems within an existing scien-

orbard I or part of personal or
classraom use i granted without e provided tha copi are no made or distributed

tific or other significant codebase is a major challenge. A nightmare
scenario is having to rewrite the application using a new APL A
more pleasant scenario is when the programming language sup-

o b e g, Gopyriht o comppacat f e ok s b oo

andor afee. Request permissions from permissions@acm o,
HPDC 2, June 27-July 1, 2022, Minneapols, MN, USA

licensed 10 ACM

ACM ISBN 975-1-4503-9199-3/22/06...$15.00
Tttpe/dos rg/10.1145/3502151.3531469

such s Fortran 90's kind
parameter for type specification, or the recent VPFloat [35, 36]

extension to C++. In this case, the programmer needs to modify
‘much less source code, but they still must deal with cross-language
issues (if even possible) and update and rebuild any libraries their
codebase uses. Of course, these become daunting tasks for a large
application. Additionally, any freshly rebuilt application may need

10

A user can execute their “blessed binary” under FPVM simply:

) run ./solve_climate_change input.csv

Without recompiling

11

FPVM is a Virtual Machine

No hardware support for virtualized floating point
So we simulate it using

Configure the hardware to trap when rounding,
overflow, etc., occur.

Emulate the instruction in software with a
different arithmetic system

12

Let's say we have an instruction which rounds

add]

add y

mulsd %xmm4,%xmmo
addsd |),
movsd) ()

The hardware catches this and tells the kernel

add ’ Instruction

add , “faults” Kernel
mulsd %xmm4,%xmmo P> receives the
addsd (), ‘ trap

movsd) ()

... which delegates the fault to FPVM with SIGFPE

add ’ Instruction
add , “faults” Kernel
mulsd %xmm4,%xmmo P> receives the
addsd (), ‘ trap
movsd) ()
Delegates
through
SIGFPE

FPVM Decodes
faulting
instruction

15

FPVM then emulates this instruction
at a higher precision
(e.g., 200 bit MPFR)

add ’ Instruction
add , “faults” Kernel
mulsd %xmm4,%xmmo P> receives the
addsd (), ‘ trap
movsd X, ()
Return to Delegates
the next through
instruction SIGFPE

(/ FPVM Decodes
faulting
instruction

Emulation with
alternative L\

math package

16

There’s one problem with this...

64 bit register

|

We can't just cram higher precision
floats in smaller registers!

200 bit MPFR value

17

Solution: NaN boxing

64 bit register

T

(Disguised as a NaN)

Ox7ff4 Py

This gives us a big benefit!

We put a pointer into the register.

200 bit MPFR value

18

Solution: NaN boxing

64 bit register

T

(Disguised as a NaN)

Ox7ff4 Py
Future accesses to
this value will also
trap into FPVM!
\

We put a pointer into the register.

200 bit MPFR value

19

Solution: NaN boxing

64 bit register

This indirection also means FPVM

T

has to include a garbage collector,
though...

Ox7ff4 Py

200 bit MPFR value

20

FPVM Supports four alternative arithmetic systems

Vanilla

Evaluate using IEEE
Floating point
hardware

_ J

hYZ

Boxed

Vanilla, but with
NaN boxed values

_ J

_

MPFR

Use arbitrary
precision floats
from the MPFR

library

hYZ

J

Posits

Experimental
bindings to the
posits alternative
arithmetic system

_ J

21

These are broken down into two groups

4)

Vanilla

Evaluate using IEEE
Floating point
hardware

& J

4)

Boxed

Vanilla, but with
NaN boxed values

& J

Correctness Validation

-

(U

MPFR

Use arbitrary
precision floats
from the MPFR

library

aYs

/

Posits

Experimental
bindings to the
posits alternative
arithmetic system

(U

N

/

Real alternatives to IEEE floating point

22

we’ll focus on Boxed in this talk

4)

Vanilla Boxed MPFR Posits
Evaluate using IEEE Use arbitrary Experimental
Floating point Vanilla, but with precision floats bindings to the
hardware NaN boxed values from the MPFR posits alternative
library arithmetic system

& J

Boxed is a minimal system that
amplifies virtualization overhead

23

Unfortunately,

x86 is not fully floating point virtualizable.

We aren't going to get traps for all operations which
should to maintain correctness.

24

Unfortunately,

x86 is not fully floating point virtualizable.

We aren't going to get traps for all operations which
should to maintain correctness.

double x
long vy

(léng)&x;

Treating floats as ints
won't act right with NaNs

25

Unfortunately,

x86 is not fully floating point virtualizable.

We aren't going to get traps for all operations which
should to maintain correctness.

double x = ...;
double X = ...; double z = -x;
long vy = *x(longx)&x; v
movsd «un, S%Xmmo
Treating floats as ints xorpd %xmml, (1 << 63)

won't act right with NaNs
The evil compiler

thinks its clever...

26

Binary code analysis to the rescue!

-
s e~

2 push rbp N
extern double fp; mov rbp, rsp N
int foo (double fp) { movsd QWORD PTR [rbp-8],} xmm@
return *(int*) &fp; lea rax, [rbp-8]
} mov| eax,! DWORD PTR [rax]
pop rbp
ret

FPVM featured a binary analysis to find
these situations

27

It then inserts “correctness traps”

extern double fp;

int foo (double fp) {
return *(int*) &fp;

}

o=
-

- .
e~

push rbp S
mov rbp, rsp N
movsd QWORD PTR [rbp-8],} xmmo
lea rax, [rbp-8]

mov| eax, RD PTR [rax]

pop rbp

ret

A trap to FPVM would be
inserted here to "demote”
eax back to a float

28

This work:

Virtualization So Light, it Floats!
Accelerating Floating Point
Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

Northwestern | JAb

29

Accelerating Floating Point
Virtualization

FPVM’s performance has left room for
iIimprovement.

It enabled transparent swapping of arithmetic
systems

But... some applications had 6,000x
slowdown

31

Our baseline performance overheads

Application Slowdown

5617.7x

5000 -
4000
c
2 5
(@] <
g 3000 2
=)
X
2000 2
X X -
10004 2 3 :
2 2 5
0 I I

| I I 1
Double Enzo fbench ffbench Lorenz 3-body

Pend.
Benchmark

32

Breaking down the virtualization overhead
Lower = Better

A instruction, the majority of the <
overhead comes from signal b
] . -body
delivery and returning to the
next instruction Lorenz
ffbench
fbench
Enzo
Double
Pend.
| I 1 1 1
0 2000 4000 6000 8000
Amortized CPU Cycles
i hw [decache bind B altmath feall T ret 33

i kernel [decode emul [gce B corr

Ideally alternative math would be the only
overhead

3-body
Lorenz
ffbench
fbench

Enzo

Double
Pend.

I | | I
0 2000 4000 6000 8000
Amortized CPU Cycles

B hw [decache bind Il asltmath WM fcall 00 ret
i kernel [decode T emul [gce I corr

34

Everything else is virtualization overhead

3-body
Lorenz
ffbench
fbench

Enzo

Double
Pend.

,1

I | | I
0 2000 4000 6000 8000
Amortized CPU Cycles

B hw [decache bind Il asltmath WM fcall 00 ret
i kernel [decode T emul [gce I corr

35

FPVM was between 10 and 20x slower than our

Slowdown (1 is Best Possible)

goal of zero-cost virtualization

Slowdown from lower bound

25 1)
20 3 .
15) 2 -
R
10
5 .
Ixis "“zero
0 —1 <4 virtualization
| | | | |
Double Enzo fbench ffbench Lorenz 3-body overhead"
Pend.

Benchmark

36

The goal of this paper is to get the
down to zero.

37

We do this with three techniques

4 N ([)

Trap Short Sequence
Circuiting Emulation

Profiler based
correctness traps

Trap short circuiting first

-

Trap Short
Circuiting

o\

39

Let's take a closer look at the overheads

hw decache bind B altmath | fcall ret
kernel decode emul gc I corr
| | | |
0 2000 4000 6000 8000

Amortized CPU Cycles

This is a non-trivial, large, multi-physics
hydrodynamic astrophysical application

40

We have a few intrinsic overheads

hw decache bind B altmath B fcall ret
kernel decode emul gc I corr
| | | |
0 2000 4000 6000 8000

Amortized CPU Cycles

Hardware
exception The altmath
overhead itself

41

This test uses the minimum overhead altmath

hw decache bind B altmath B fcall ret
kernel decode emul gc I corr
| | | |
0 2000 4000 6000 8000

Amortized CPU Cycles

The “worst case”
system for us: Boxed

42

But a few of these are solvable software problems

hw decache bind Il altmath | fcall ret
kernel decode emul gc I corr
T | | |
0 20qQ0 4000 600p 8090

Amortized CPU Cycles

Kernel Returning
signal from the
delivery GC signal

43

In this work, we’ll focus on the signal overheads

hw decache bind Il altmath fcall ret
kernel decode emul gc I corr
T | | |
0 20qQ0 4000 6000 8090

Amortized CPU Cycles

Kernel Returning
signal from the
delivery signal

44

Let’s attack the problem head on

e The FPVM runtime needs to be notified of floating point
exceptions

e EXxisting signal mechanisms are designed to be general
purpose, and relatively rare

e ...and as aresult, are not as fast as they could be.

45

So let's just replace signals!

46

Regular signal delivery is expensive

FPVM Trap
Handler

Kernel

#XF (~380 cycles)

[Faulting Instruction }

47

Regular signal delivery is expensive

Kernel Trap W
Handler

)

Signal Delivery Logic}

~5600 cycles

#XF (~380 cycles)

[Faulting Instruction } [FPVM Emulator 1

Kernel

48

Sigreturn is also slow!

Kernel Trap W
Handler

#XF (~380 cycles)

[Faulting Instruction }

)

Signal Delivery Logic}

~5600 cycles

[FPVM Emulator }

Kernel

49

Trap Short Circuiting bypasses the signals

[FPVM Trap)

Handler Directly iretq to
2 FPVM (~3508 cycles)

#XF (~380 cycles)

[Faulting Instruction }4 (FPVM Emulator 1
ret

(~30 cycles)

Kernel

50

Trap short circuiting reduces overheads substantially

is reduced
by over 10x
It's now basically free to
from FPVM
Overall overheads drop
by ~6x

Enzo

Baseline

® Short Circuiting
1 | | |
2000 4000 6000 8000
Amortized CPU Cycles
Trap short
circuiting
overhead

51

This improvement is consistent

0 hw [decache bind I altmath W fcall
[kernel [decode [emul 0 gc 0 ret

Baseline

3-body +—+1memr - ————————

Baseline
Lorenz

Baseline

ffbench

Baseline

fbench

Baseline
Enzo

Baseline

Double
Pend.

T T T T
0 2000 4000 6000 8000

Amortized CPU Cycles
52

There’s more we can do, though.

53

Trap Short
Circuiting

-

o

Profiler based

correctness traps

~

J

54

addsd
mulsd
divsd

%Xmm@, Sxmml
%Xmm@, Sxmmod
%Xmmo, S%xmm?2

55

FPVM emulation tends to cascade

If this instruction
traps

addsd %xmm0, %xmméj
mulsd %xmm@, %xmm
divsd %xmm@, Sxmm2

56

FPVM emulation tends to cascade

addsd __ %xmm@, S%xmml
|mulsd %Xmmo, %Xmmﬂ So will this one
divsd XXMMy, “sxmms

57

Sequence emulation amortizes
overheads across instructions

addsd %xmm@, S%xmml | Trap!
mulsd S%xmm@, S%xmmo
divsd %xmm@, Sxmm2

58

Sequence emulation amortizes
overheads across basic blocks

(addsd
mulsd
divsd

\

%Xmmo, osxmm1)
%Xmmd, %xmmod
%BXmmod, Sxmm2

J

We emulate all of
these!

59

Sequence emulation amortizes
overheads across instructions

(addsd %Xmmo, %xmml)
mulsd %Sxmm@, S%xmmo
divsd %xmm@, Sxmm2

_ * Y

So we only pay exception
handling once!

60

We have to be careful though!

addsd %xmm@, Sxmml
mulsd %xXmm@, Sxmmo
divsd %xmm@, Sxmm2
movsd (...), S%xmm2
addsd %Xmmod, Sxmm2

We have to be careful though!

Most FP sequences are broken up by
a few NON-FP instructions!

62

We extended FPVM to emulate these
instructions

addsd %xmm@, Sxmml
mulsd %xXmm@, Sxmmo
divsd %xmm@, S%xmm2
movsd (...), S%xmm2
addsd %Xmmod, Sxmm2

Combining these solutions nearly eliminates kernel

overhead

Enzo —

Short Circuiting

Sequence + Trap Short Circuiting

Baseline

| | |
2000 4000 6000
Amortized CPU Cycles

Overhead now dominated
by altmath and

T
8000

64

Very quickly, our last technique...

Profiler based
correctness traps

65

This technique attacks the User Experience

The previous technique to insert
correctness traps could take weeks
to complete.

extern double fp;

int foo (double fp) {
return *(int*) &fp;

}

This is because it attempts to solve
an unsolvable problem

(alias analysis)

— o ———
- —
- -~

-~

push rbp N
mov rbp, rsp A
movsd QWORD PTR [rbp-8],} xmme@
lea rax, [rbp-8]

mov} eax,i DWORD PTR [rax]

pop rbp

ret

66

We replaced this analysis with a profiler

e Run your program once
through a profiler

e "Representative workload"”

e Analysis times down from
weeks to minutes

e FPVM can now run many more
programs!

extern double fp;

int foo (double fp) {
return *(int*) &fp;

}

s e

-~

push rbp N
mov rbp, rsp A
movsd QWORD PTR [rbp-8],} xmme@
lea rax, [rbp-8]

mov} eax,i DWORD PTR [rax]

pop rbp

ret

67

Results

68

Altmqth now [0 hw [decache bind BN altmath B fcall
domianes o kernel decode emul B gc Bl corr
across the 3 oy
boq rd Lorenz

ret

Baseline
This Work

Baseline
This Work

Baseline

ffoench This Work

Baseline

fbench This Work

Baseline
Enzo

This Work

Double
Pend.

Baseline
This Work

] 1 | |
0 2000 4000 6000 8000
Amortized CPU Cycles

69

Using boxed math, overheads reduce by up to ~10x

X
N
N Application Slowdown
o
= = NONE
1 SEQ
5000 - 3 SHORT
i 1 SEQ SHORT
()}
m
- 4000 —
= &
o <
T 3000 i
2 R
3 L
X
2000 @
N
3 x X N
X " P M. x X i
1000 3 & L
23R Sl 28ss |2k 8388 [[BRg
- O m N N O ‘D.ol\ N
O | | |

I
Double Enzo fbench ffbench Lorenz 3-body

Pend.
Benchmark

Virtualization overheads are also reduced

Baseline

Enzo Short Circuiting

Sequence + Trap Short Circuiting

| | | |
0 2000 4000 6000 8000
Amortized CPU Cycles

. hw I decache bind BN altmath W fcall 0 ret 71
e kernel [decode 0 emul W gc Il corr

We are much closer to zero-cost

ion

tualizat
Slowdown from lower bound

vIr

Lower = better

ST'ST

0 NONE
0 SEQ SHORT

/1 SEQ

0 SHORT

XZ9°'0¢

Pend.

X0L'0T

Te] o LN o LN o
o N — —

(3191SS0d 1599 SI T) UMOPMO|S

72

Benchmark

The overhead can get even lower with a more

expensive altmath like MPFR

Slowdown from lower bound - MPFR

:-_7 25 =
T NONE
nqé 20 1 SEQ
n SHORT
= _ SEQ SHORT
— 15 9
C ; x m
= 10 - 0 X P 9 & X
o x Ll X X ~ § 2« [X 2

~ (-} I . . - o
2 542885 [es [EAR X =R 8
o pp R L NG N e
— __Iﬁ] T —
(Vp) 0 — [—

Double Enzo fbench ffbench Lorenz 3-body

Pend.

Benchmark

191319q = JamoT

73

Conclusion

e We bypass signals with trap short
circuiting

e We emulate more instructions with
sequence emulation

e We reduce the time to do correctness
analysis from weeks to minutes

e All of which reduces the overhead of
virtualization around the alternative
math library down to as low as 1.35x with
MPFR

(

Sequence
Emulation

(U

>

J

-

U

~

Trap Short
Circuiting

J

Profiler based
correctness
traps

74

Virtualization So Light, it Floats!
Accelerating Floating Point
Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

ﬁ’;:f’“’ “r Northwestern | [b

5

BACKUP SLIDES

I hw [decache ~ bind I altmath e fcall [ret

[0 kernel ' decode I emul [0 gc I corr

3-body
Lorenz l
ffbench

fbench

Enzo

Pend.

Double |

| | I |
0 2000 4000 6000 8000
Amortized CPU Cycles

77

Kernel

] L Custom
st ’ .
FPVM Trap | —2y" Delivery
Handler ~/
A no Regular signal delivery ~350 cyc.
} @ » and return (~5600+ cyc.) S (iretq)
T) ~380 cye. Userspace
(#XF)
A 4

) . ~30 cyc. ~~ (ret)

Faulting Instruction [¢ (6) FPVM

78

Traditional Traps

Kernel

Linux
Kernel

~380 oy 6 /@\
(int3) ~1800 cyc

Signal
Delivery

3 ~3800 cyc.
(SIGTRAP)

Magic Traps

Kernel

Linux
Kernel

Signal
Delivery

I Userspace \

Faulting
Instruction

\ 4

FPVM

Userspace

Faulting
Instruction

~100 cyc.
(call)

(ret)

FPVM

Magic Traps bypass the kernel

79

SEQ SHORT

X9°¢el1

3 SHORT

=1 NONE
3 SEQ

XZ'vese

Application Slowdown

XZ'9S6¢&
XL'LT9S

5000 -
4000
3000 -
2000 -
1000

UMOPMOIS

Pend.

Benchmark

80

Slowdown from lower bound

e
e
w E®
nNu o O«
> B & eTsT
XZ9°'02
X/6"8T
X0L'0T
| | | | |
LN o (fg] o LN
N N — —

(9191SS0d 3599 SI T) UMOPMOIS

Enzo fbench ffbench Lorenz 3-body

Double
Pend

81

Benchmark

0 hw [decache bind B altmath B fcall ret
[kernel decode emul [0 gc B corr

[0 |NONE

[0 TSEQ (5.2x)
[T SHORT (3.6%)
SEQ SHORT (10.2x)

3-body

[] [NONE

| SEQ (9.7x)
[]| SHORT (3.7x)
SEQ SHORT (12.4x)

Lorenz

[] | NONE

| [[SEQ (5.1x)
|| SHORT (3.3x)
SEQ SHORT (6.6x)

ffbench _

| |NONE

I8 SEQ (3.2x)
[][] SHORT (3.8x)
SEQ SHORT (8.5x)

fbench

Il

[] | |NONE
[[SEQ (2.9%)
Enzo il L] [SHORT (3.6x)
T [SEQ SHORT (7.7x)
[| | NONE
Double - [] HSOE{(% ggx;
LX
Pend. [0 SEQ SHORT (7.1x)
I T T T T
0 2000 4000 6000 8000

Amortized CPU Cycles

82

Percentage

100 -

80 -
60 -
40 -

20 =

Instruction Rank Popularity

enzo.exe
double_pendulum

—— fbench
ffbench
lorenz_attractor
three_body_simulation

| |
100 200 300 400 500 600
Sequence Rank

83

100
80 —
60 -

40

Percentage

20 =

 C—
SROS—
o=

s

CDF of Instruction Sequence Length

enzo.exe
- double_pendulum
—— fbench
ffbench
lorenz_attractor
three _body simulation

| | |
50 100 150 200
Sequence Length

84

W
o
|

N
o
|

(-
o
|

o
|

Sequence Length Weighed Rank Popularity

enzo.exe
double _pendulum

—— fbench
ffbench
lorenz_attractor
three_body simulation

Weighted Sequence Length

I | | | I T
0 100 200 300 400 500 600

Sequence Rank

85

X9'68

Xz oct
X0'vSt
XS'0LE

SEQ SHORT
3-body

3 SHORT

=3 NONE
/3 SEQ

Lorenz

ffbench

Xy*866¢

wdown - MPFR

fbench

XZT°T6SI
XT €091

Application Slo

X2 eEL62
XL'098E

Enzo

Double

4000 -
3000 -
2000 -
1000 -

UMOPMOIS

Pend.

Benchmark

86

Slowdown from lower bound - MPFR

SEQ SHORT

W
Zgc
=85 XL£09
X9€E'6
XE£Z'6
XLE'L
X0T'9
XE8"L
I T j I
n o 1 o
N N
(3seg S!I T) umopmo|s

Enzo fbench ffbench Lorenz 3-body

Double
Pend

Benchmark

87

e hw I decache bind B altmath W fcall 0 ret
mn kernel decode emul B gc I corr

[INONE

[| Q (3.6X
[] SHORT (2.7x)
Q SHORT (5.8x)

3-body

[I INONE

Q (6.7/x

Lorenz] SHORT (3.0x)
HORT (7.8x)
[] === 7 NONE
: [] Q (4.3x
ffbench m IgﬁngSHONWZBM
[[SEQ SHORT (6.2x)

il [INONE

Q .0
fbench i -Fnomwzﬁm

Q SHORT (4.6x)

T JNONE

] = 5X
Enzo - [[SHORT (2.0x)
| Q SHOR 4,.0X

I INONE

Double
Pend.

.9x
[J] SHORT (2.0x)
Q SHOR .9x)

| I | | I
0 2000 4000 6000 8000 10000
Amortized CPU Cycles

MPFR altmath overheads 88

