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There are several alternatives to Floating Point

- AI Model quantization: float8, bfloat16, etc.
- Posit/Unum, rationals, arbitrary precision floating point, 

Bfloats, logarithmic arithmetic, …  
- A whole conference dedicated to this

3https://www.arith2025.org/



Changing number systems will changes results.

64 bit  
floats200 bit

MPFR 4



Switching to these systems is nontrivial
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The entire code structure needs to change!

7

Imagine needing to worry about 
this in something like CESM!

Manually manage 
memory lifetimes of 
your numbers!



We want scientists to be able to 
experiment with these things

64 bit  
floats200 bit

MPFR 8



We want to write applications with the 
semantics of hardware floating point

But have it execute using some 
alternative arithmetic!
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Floating Point Virtualization

- Have the program think it is using 
hardware floating point

- But swap it out, transparently through 
virtualization

HPDCʼ22

nickw.io/papers/hpdc22.pdf
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A user can execute their “blessed binaryˮ under FPVM simply:

$ fpvm run ./solve_climate_change input.csv

Without recompiling
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FPVM is a Virtual Machine

- No hardware support for virtualized floating point
- So we simulate it using software

- Configure the hardware to trap when rounding, 
overflow, etc., occur.

- Emulate the instruction in software with a 
different arithmetic system
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Let's say we have an instruction which rounds
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The hardware catches this and tells the kernel

Kernel 
receives the 

trap

Instruction 
“faults”
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… which delegates the fault to FPVM with SIGFPE

Kernel 
receives the 

trap

Instruction 
“faults”

FPVM Decodes 
faulting 

instruction

Delegates 
through 
SIGFPE
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FPVM then emulates this instruction 
at a higher precision

(e.g., 200 bit MPFR)

Kernel 
receives the 

trap

Instruction 
“faults”

FPVM Decodes 
faulting 

instruction

Delegates 
through 
SIGFPE

Emulation with 
alternative 
math package

Return to 
the next 

instruction
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There’s one problem with this…

64 bit register

200 bit MPFR value

We canʼt just cram higher precision 
floats in smaller registers!
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Solution: NaN boxing

64 bit register We put a pointer into the register.

Disguised as a NaN

This gives us a big benefit!

200 bit MPFR value

0x7ff4
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Solution: NaN boxing

64 bit register We put a pointer into the register.

Disguised as a NaN

Future accesses to 
this value will also 
trap into FPVM!

200 bit MPFR value

0x7ff4
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Solution: NaN boxing

64 bit register This indirection also means FPVM 
has to include a garbage collector, 
though…

200 bit MPFR value

0x7ff4
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FPVM Supports four alternative arithmetic systems
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Boxed

Vanilla, but with 
NaN boxed values

Vanilla
Evaluate using IEEE 

Floating point 
hardware

MPFR
Use arbitrary 

precision floats 
from the MPFR 

library

Posits
Experimental 

bindings to the 
posits alternative 
arithmetic system



These are broken down into two groups
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Boxed

Vanilla, but with 
NaN boxed values

Vanilla
Evaluate using IEEE 

Floating point 
hardware

MPFR
Use arbitrary 

precision floats 
from the MPFR 

library

Posits
Experimental 

bindings to the 
posits alternative 
arithmetic system

Correctness Validation Real alternatives to IEEE floating point
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Boxed

Vanilla, but with 
NaN boxed values

Vanilla
Evaluate using IEEE 

Floating point 
hardware

MPFR
Use arbitrary 

precision floats 
from the MPFR 

library

Posits
Experimental 

bindings to the 
posits alternative 
arithmetic system

Boxed is a minimal system that 
amplifies virtualization overhead

We’ll focus on Boxed in this talk



Unfortunately,

x86 is not fully floating point virtualizable.

We arenʼt going to get traps for all operations which 
should to maintain correctness.
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We arenʼt going to get traps for all operations which 
should to maintain correctness.

Treating floats as ints 
wonʼt act right with NaNs
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Unfortunately,

x86 is not fully floating point virtualizable.

We arenʼt going to get traps for all operations which 
should to maintain correctness.

Treating floats as ints 
wonʼt act right with NaNs

The evil compiler 
thinks its clever…
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Binary code analysis to the rescue!

27

FPVM featured a binary analysis to find 
these situations



It then inserts “correctness traps”
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A trap to FPVM would be 
inserted here to “demoteˮ 
eax back to a float
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FPVM’s performance has left room for 
improvement.

It enabled transparent swapping of arithmetic 
systems

But… some applications had 6,000x 
slowdown
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Our baseline performance overheads



Breaking down the virtualization overhead

A instruction, the majority of the 
overhead comes from signal 
delivery and returning to the 
next instruction

Lower = Better
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Ideally alternative math would be the only 
overhead
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Everything else is virtualization overhead

35



FPVM was between 10 and 20x slower than our 
goal of zero-cost virtualization

36

1x is “zero 
virtualization 
overheadˮ



The goal of this paper is to get the cost of 
virtualization down to zero.
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We do this with three techniques
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Trap Short 
Circuiting

Sequence 
Emulation

Profiler based 
correctness traps
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Trap Short 
Circuiting

Sequence 
Emulation

Profiler based 
correctness traps

Trap short circuiting first



Let's take a closer look at the overheads
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This is a non-trivial, large, multi-physics 
hydrodynamic astrophysical application

https://enzo-project.org/



We have a few intrinsic overheads

Hardware 
exception 
overhead

The altmath 
itself
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This test uses the minimum overhead altmath

The “worst case” 
system for us: Boxed
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But a few of these are solvable software problems

Kernel 
signal 
delivery GC

Returning 
from the 
signal
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In this work, we’ll focus on the signal overheads

Kernel 
signal 
delivery

Returning 
from the 
signal
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● The FPVM runtime needs to be notified of floating point 
exceptions

● Existing signal mechanisms are designed to be general 
purpose, and relatively rare

● … and as a result, are not as fast as they could be.

Let’s attack the problem head on
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● The FPVM runtime needs to be notified of floating point 
exceptions

● Existing signal mechanisms are designed to be general 
purpose, and relatively rare

● … and as a result, are not as fast as they could be.

So letʼs just replace signals!

Let’s attack the problem head on
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Faulting Instruction

#XF (~380 cycles)

FPVM Trap 
Handler

Kernel

User

Regular signal delivery is expensive



Regular signal delivery is expensive
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Faulting Instruction

#XF (~380 cycles)

Kernel Trap 
Handler

Kernel

User

FPVM Emulator

~5600 cycles

Signal Delivery Logic



Sigreturn is also slow!
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Faulting Instruction

#XF (~380 cycles)

Kernel

User

FPVM Emulator

~5600 cycles

Signal Delivery LogicKernel Trap 
Handler



Trap Short Circuiting bypasses the signals
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Faulting Instruction

#XF (~380 cycles)

FPVM Trap 
Handler

Kernel

User

FPVM Emulator

Directly iretq to 
FPVM (~350 cycles)

ret
(~30 cycles)



Trap short circuiting reduces overheads substantially

● Kernel time is reduced 
by over 10x

● Itʼs now basically free to 
return from FPVM

● Overall overheads drop 
by 6x

Trap short 
circuiting 
overhead
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This improvement is consistent
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There’s more we can do, though.
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54

Trap Short 
Circuiting

Sequence 
Emulation

Profiler based 
correctness traps
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FPVM emulation tends to cascade

If this instruction 
traps
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FPVM emulation tends to cascade

So will this one
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Sequence emulation amortizes 
overheads across instructions

Trap!
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Sequence emulation amortizes 
overheads across basic blocks

We emulate all of 
these!

…
59



Sequence emulation amortizes 
overheads across instructions

So we only pay exception 
handling once!
…
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We have to be careful though!
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We have to be careful though!

Most FP sequences are broken up by 
a few NONFP instructions!
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We extended FPVM to emulate these 
instructions
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Combining these solutions nearly eliminates kernel 
overhead

Overhead now dominated 
by altmath and GC 64
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Trap Short 
Circuiting

Sequence 
Emulation

Profiler based 
correctness traps

Very quickly, our last technique…



This technique attacks the User Experience

The previous technique to insert 
correctness traps could take weeks 
to complete.

This is because it attempts to solve 
an unsolvable problem

(alias analysis)
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We replaced this analysis with a profiler

● Run your program once 
through a profiler

● “Representative workloadˮ

● Analysis times down from 
weeks to minutes

● FPVM can now run many more 
programs!
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Results
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Altmath now 
dominates 
across the 
board
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Using boxed math, overheads reduce by up to ~10x
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Virtualization overheads are also reduced
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We are much closer to zero-cost 
virtualization

Lower = better
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The overhead can get even lower with a more 
expensive altmath like MPFR

Lower = better
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Conclusion

● We bypass signals with trap short 
circuiting

● We emulate more instructions with 
sequence emulation

● We reduce the time to do correctness 
analysis from weeks to minutes

● All of which reduces the overhead of 
virtualization around the alternative 
math library down to as low as 1.35x with 
MPFR

74

Trap Short 
Circuiting

Sequence 
Emulation

Profiler based 
correctness 

traps



Thanks!
Virtualization So Light, it Floats!

Accelerating Floating Point 
Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

Download our 
paper!
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Magic Traps bypass the kernel 79
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MPFR altmath overheads 88


