
Virtualization So Light, it Floats!
Accelerating Floating Point

Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

1

Virtualization So Light, it Floats!
Accelerating Floating Point

Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

2

There are several alternatives to Floating Point

- AI Model quantization: float8, bfloat16, etc.
- Posit/Unum, rationals, arbitrary precision floating point,

Bfloats, logarithmic arithmetic, …
- A whole conference dedicated to this

3https://www.arith2025.org/

Changing number systems will changes results.

64 bit
floats200 bit

MPFR 4

Switching to these systems is nontrivial

5

Switching to these systems is nontrivial

6

The entire code structure needs to change!

7

Imagine needing to worry about
this in something like CESM!

Manually manage
memory lifetimes of
your numbers!

We want scientists to be able to
experiment with these things

64 bit
floats200 bit

MPFR 8

We want to write applications with the
semantics of hardware floating point

But have it execute using some
alternative arithmetic!

9

Floating Point Virtualization

- Have the program think it is using
hardware floating point

- But swap it out, transparently through
virtualization

HPDCʼ22

nickw.io/papers/hpdc22.pdf

10

A user can execute their “blessed binaryˮ under FPVM simply:

$ fpvm run ./solve_climate_change input.csv

Without recompiling

11

FPVM is a Virtual Machine

- No hardware support for virtualized floating point
- So we simulate it using software

- Configure the hardware to trap when rounding,
overflow, etc., occur.

- Emulate the instruction in software with a
different arithmetic system

12

Let's say we have an instruction which rounds

13

The hardware catches this and tells the kernel

Kernel
receives the

trap

Instruction
“faults”

14

… which delegates the fault to FPVM with SIGFPE

Kernel
receives the

trap

Instruction
“faults”

FPVM Decodes
faulting

instruction

Delegates
through
SIGFPE

15

FPVM then emulates this instruction
at a higher precision

(e.g., 200 bit MPFR)

Kernel
receives the

trap

Instruction
“faults”

FPVM Decodes
faulting

instruction

Delegates
through
SIGFPE

Emulation with
alternative
math package

Return to
the next

instruction

16

There’s one problem with this…

64 bit register

200 bit MPFR value

We canʼt just cram higher precision
floats in smaller registers!

17

Solution: NaN boxing

64 bit register We put a pointer into the register.

Disguised as a NaN

This gives us a big benefit!

200 bit MPFR value

0x7ff4

18

Solution: NaN boxing

64 bit register We put a pointer into the register.

Disguised as a NaN

Future accesses to
this value will also
trap into FPVM!

200 bit MPFR value

0x7ff4

19

Solution: NaN boxing

64 bit register This indirection also means FPVM
has to include a garbage collector,
though…

200 bit MPFR value

0x7ff4

20

FPVM Supports four alternative arithmetic systems

21

Boxed

Vanilla, but with
NaN boxed values

Vanilla
Evaluate using IEEE

Floating point
hardware

MPFR
Use arbitrary

precision floats
from the MPFR

library

Posits
Experimental

bindings to the
posits alternative
arithmetic system

These are broken down into two groups

22

Boxed

Vanilla, but with
NaN boxed values

Vanilla
Evaluate using IEEE

Floating point
hardware

MPFR
Use arbitrary

precision floats
from the MPFR

library

Posits
Experimental

bindings to the
posits alternative
arithmetic system

Correctness Validation Real alternatives to IEEE floating point

23

Boxed

Vanilla, but with
NaN boxed values

Vanilla
Evaluate using IEEE

Floating point
hardware

MPFR
Use arbitrary

precision floats
from the MPFR

library

Posits
Experimental

bindings to the
posits alternative
arithmetic system

Boxed is a minimal system that
amplifies virtualization overhead

We’ll focus on Boxed in this talk

Unfortunately,

x86 is not fully floating point virtualizable.

We arenʼt going to get traps for all operations which
should to maintain correctness.

24

Unfortunately,

x86 is not fully floating point virtualizable.

We arenʼt going to get traps for all operations which
should to maintain correctness.

Treating floats as ints
wonʼt act right with NaNs

25

Unfortunately,

x86 is not fully floating point virtualizable.

We arenʼt going to get traps for all operations which
should to maintain correctness.

Treating floats as ints
wonʼt act right with NaNs

The evil compiler
thinks its clever…

26

Binary code analysis to the rescue!

27

FPVM featured a binary analysis to find
these situations

It then inserts “correctness traps”

28

A trap to FPVM would be
inserted here to “demoteˮ
eax back to a float

Virtualization So Light, it Floats!
Accelerating Floating Point

Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

This work:

29

Virtualization So Light, it Floats!
Accelerating Floating Point

Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

30

FPVM’s performance has left room for
improvement.

It enabled transparent swapping of arithmetic
systems

But… some applications had 6,000x
slowdown

31

32

Our baseline performance overheads

Breaking down the virtualization overhead

A instruction, the majority of the
overhead comes from signal
delivery and returning to the
next instruction

Lower = Better

33

Ideally alternative math would be the only
overhead

34

Everything else is virtualization overhead

35

FPVM was between 10 and 20x slower than our
goal of zero-cost virtualization

36

1x is “zero
virtualization
overheadˮ

The goal of this paper is to get the cost of
virtualization down to zero.

37

We do this with three techniques

38

Trap Short
Circuiting

Sequence
Emulation

Profiler based
correctness traps

39

Trap Short
Circuiting

Sequence
Emulation

Profiler based
correctness traps

Trap short circuiting first

Let's take a closer look at the overheads

40

This is a non-trivial, large, multi-physics
hydrodynamic astrophysical application

https://enzo-project.org/

We have a few intrinsic overheads

Hardware
exception
overhead

The altmath
itself

41

This test uses the minimum overhead altmath

The “worst case”
system for us: Boxed

42

But a few of these are solvable software problems

Kernel
signal
delivery GC

Returning
from the
signal

43

In this work, we’ll focus on the signal overheads

Kernel
signal
delivery

Returning
from the
signal

44

● The FPVM runtime needs to be notified of floating point
exceptions

● Existing signal mechanisms are designed to be general
purpose, and relatively rare

● … and as a result, are not as fast as they could be.

Let’s attack the problem head on

45

● The FPVM runtime needs to be notified of floating point
exceptions

● Existing signal mechanisms are designed to be general
purpose, and relatively rare

● … and as a result, are not as fast as they could be.

So letʼs just replace signals!

Let’s attack the problem head on

46

47

Faulting Instruction

#XF (~380 cycles)

FPVM Trap
Handler

Kernel

User

Regular signal delivery is expensive

Regular signal delivery is expensive

48

Faulting Instruction

#XF (~380 cycles)

Kernel Trap
Handler

Kernel

User

FPVM Emulator

~5600 cycles

Signal Delivery Logic

Sigreturn is also slow!

49

Faulting Instruction

#XF (~380 cycles)

Kernel

User

FPVM Emulator

~5600 cycles

Signal Delivery LogicKernel Trap
Handler

Trap Short Circuiting bypasses the signals

50

Faulting Instruction

#XF (~380 cycles)

FPVM Trap
Handler

Kernel

User

FPVM Emulator

Directly iretq to
FPVM (~350 cycles)

ret
(~30 cycles)

Trap short circuiting reduces overheads substantially

● Kernel time is reduced
by over 10x

● Itʼs now basically free to
return from FPVM

● Overall overheads drop
by 6x

Trap short
circuiting
overhead

51

This improvement is consistent

52

There’s more we can do, though.

53

54

Trap Short
Circuiting

Sequence
Emulation

Profiler based
correctness traps

55

FPVM emulation tends to cascade

If this instruction
traps

56

FPVM emulation tends to cascade

So will this one

57

Sequence emulation amortizes
overheads across instructions

Trap!

58

Sequence emulation amortizes
overheads across basic blocks

We emulate all of
these!

…
59

Sequence emulation amortizes
overheads across instructions

So we only pay exception
handling once!
…

60

We have to be careful though!

61

We have to be careful though!

Most FP sequences are broken up by
a few NONFP instructions!

62

We extended FPVM to emulate these
instructions

63

Combining these solutions nearly eliminates kernel
overhead

Overhead now dominated
by altmath and GC 64

65

Trap Short
Circuiting

Sequence
Emulation

Profiler based
correctness traps

Very quickly, our last technique…

This technique attacks the User Experience

The previous technique to insert
correctness traps could take weeks
to complete.

This is because it attempts to solve
an unsolvable problem

(alias analysis)

66

We replaced this analysis with a profiler

● Run your program once
through a profiler

● “Representative workloadˮ

● Analysis times down from
weeks to minutes

● FPVM can now run many more
programs!

67

Results

68

Altmath now
dominates
across the
board

69

Using boxed math, overheads reduce by up to ~10x

70

Virtualization overheads are also reduced

71

We are much closer to zero-cost
virtualization

Lower = better

72

The overhead can get even lower with a more
expensive altmath like MPFR

Lower = better

73

Conclusion

● We bypass signals with trap short
circuiting

● We emulate more instructions with
sequence emulation

● We reduce the time to do correctness
analysis from weeks to minutes

● All of which reduces the overhead of
virtualization around the alternative
math library down to as low as 1.35x with
MPFR

74

Trap Short
Circuiting

Sequence
Emulation

Profiler based
correctness

traps

Thanks!
Virtualization So Light, it Floats!

Accelerating Floating Point
Virtualization

Nick Wanninger, Nadharm Dhiantravan, Peter Dinda

Download our
paper!

75

BACKUP SLIDES

76

77

78

Magic Traps bypass the kernel 79

80

81

82

83

84

85

86

87

MPFR altmath overheads 88

