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Graph Neural Networks(GNN) 
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GNN applications are widely used: GCN, GIN, GAT, etc.

Social Network Biomedical  Recommendation System

Transportation

Credit: Google Image

Financial Risk Detection



1-Page Summary
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• Half-precision GNN training
o Suffers from overflow/abnormal accuracies

o Poor Kernel performance in half-precision

• Not much prior work
o Training GNN in lower-precision

• We introduce HalfGNN
o Strong baseline for GNN training & kernels

o Discretized Non-atomic SpMM for handling overflow

o Better data load/compute/store using Half2 datatype

o Proposed Half4/Half8 data-type for even better data-load/store



Outline
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• Background: Half-Precision, SpMM, SDDMM

• Investigation: Accuracy & Performance

• Contributions

oDiscretized SpMM

o Faster Load/Store/Compute

oNon-Atomic Kernel Design

• Evaluation



Background
• Float/Single-precision: 32 bits

• Half-precision: 16 bits

• Half2:

o 2 half-precision data in 32 bits
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16 bits

16 bits 16 bitshalf datatype

32 bits

float datatype

half2 datatype



Background: SpMM (Y = AwX)
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Graph CSR format

COO format
SpMM



Background: SDDMM (W = A   (YXT))
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SDDMM

Graph
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• Investigation: Accuracy & Performance
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• Discretized SpMM
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Investigation: Abnormal Accuracy
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• DGL can not train GCN, GIN in half-precision (16 bits)

Poor accuracy of DGL in half-precision



Investigation: Poor Performance
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• DGL half-precision SpMM kernels are slower than float-based kernels
– DGL uses Cusparse for SpMM

• DGL SDDMM does not gain any performance for half-precision
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Half-precision SpMM is significantly slower

  1/2

1

2

S
p

ee
d

u
p DGL float/DGL half

Similar SDDMM runtime



Investigation: Value Overflow
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GCN:

• Overflow:

o During aggregation of SpMM for a single vertex before normalization

o During addition of self-features to SpMM in GIN

o Even for relatively small sized datasets, half-precision gets out of range

GIN:



Investigation: Mixed-Precision System API
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• Mixed-precision allows half-precision integration in DGL

o All state tensors in 16 bits, Master weight updates in 32 bits

o Pytorch backend ‘fears numerical instability’ and avoids half-precision:
o exp, softmax in GAT are invoked in float

• Once one of these OPs are encountered, 

o The rest of the compute are in float

o Or one more data-conversion from float to half-precision

https://pytorch.org/docs/stable/amp.html 

https://pytorch.org/docs/stable/amp.html


Outline
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Contribution: Discretized SpMM

• Apply normalization after each warps' computation, rather than after 

the gather of each vertex

o Normalization after maximum of 128 edges per warp

o Applied to both GCN, GIN
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Contribution: Removal of Overflow Fear for GNN
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• GAT Softmax:

• Impossible to overflow in half-precision

• HalfGNN:

o Ensures all the kernels in backend run in half-precision

o Automatic, and integrated in the API



Contribution: Faster Load/Store/Compute

• half2, half4, half8 

o Interchangeable during load/store for float, float2 and float4

o GNNONE (HPDC'24) exploited float4 load for SDDMM

• Increase per thread throughput

o e.g., 8 ops (+, -, /, *, max, min) in one op during half8

o Reduces inter-thread communication during tree-reduce of SDDMM

o Reduction in synchronization steps for SDDMM
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Y. Gong and P. Kumar. GNNONE : A Unified System Optimizations for GNN Kernels. In The 33rd International 

Symposium on High-Performance Parallel and Distributed Computing (HPDC ’24), 2024.



Contribution: Faster Load/Store/Compute
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half8 half8 half8 half8

half8 half8

half8

feature (0 to 8) feature (9 to 15) feature (16 to 23) feature (24 to 31)

half

SDDMM output
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• Background: Half-Precision, SpMM, SDDMM

• Investigation: Accuracy & Performance
• Contributions

• Discretized SpMM
• Faster Load/Store/Compute

• Non-Atomic Kernel Design

• Generality of the Solution
• Evaluation



SpMM with Atomic Writes
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A typical edge-parallel design



Contribution: Non-atomic Design

2 Stage Edge-Parallel Kernel Design:

• Use the 1st stage to perform 

– Data load, Discretized reduction in SpMM

– Reduce Intra-CTA & Inter-CTA conflict

– Use shared memory to communicate among warps

– Update temporary buffer (Carryout Buffer)

• Use stage 2 kernel to write in destination vertices non-atomically

– Destination vertices can be pre-calculated without overhead in parallel manner
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Contribution: Non-atomic Design
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Non-atomic Design of SpMM with Carry-out Buffer



Contribution: Generality of the Solution

• Applicable to other systems 
– Vector load/store/compute

– Non-atomic reduction & write

– Reduced inter-thread parallelism

– Improved feature-parallelism through increasing thread operations

• Can Improve Vertex-Parallel Work
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Outline
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Evaluation
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➢ GNN Training:
• GCN : 2 layers 
• GIN  : 5 layers 

• GAT : 3 layers with 1 head
• Hidden dim = 64

➢ Evaluation Platform:
• All studies are based on Nvidia A100 GPU

Benchmarking Graph Datasets



Evaluation: Training Accuracy and Memory consumption
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HalfGNN achieves the same accuracy as DGL float

HalfGNN reduces required memory during training



Evaluation: Training Runtime
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➢ HalfGNN achieves 2.44x, 3.84x, and 2.42x 

avg. speedup for GCN, GAT, and GIN over 
DGL-half

➢ HalfGNN achieves 1.85x, 3.55x, and 1.78x 

avg. speedup for GCN, GAT, and GIN over 
DGL-float



Evaluation: Kernel Speedup
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SpMM:

➢ HalfGNN achieves 22.89x (avg.) 

speedup over DGL-half

SDDMM:

➢ HalfGNN achieves 7.12x (avg.) 

speedup over DGL-half



Evaluation: SpMM Hardware Utilization
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SM utilization:

➢ HalfGNN : 72.96 %

➢ DGL float: 50.81 %

➢ DGL half : 21.58 %

Memory bandwidth utilization:

➢ HalfGNN : 80.92 %

➢ DGL float: 51.99 %

➢ DGL half : 20.22 %



Evaluation: SDDMM Bandwidth Utilization
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Memory Bandwidth Utilization:

➢ HalfGNN : 83.71 %

➢ DGL-float: 50.59 %

➢ DGL-half : 50.85 %



Evaluation: Half8 vs Half2 for SDDMM
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Half8 in SDDMM reduces synchronization bottleneck



Evaluation: Generality of Optimizations
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Huang-float vs Huang-half2 speedup: On average gains 1.79x speedup.
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Huang original vs Huang half2

K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen. Understanding and bridging the gaps in current GNN performance optimizations. 
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 119–132, 2021.



Take Away
✓ Half-precision can provide significantly 

   faster SpMM, SDDMM kernels

✓ Strong new baseline in GNN training

✓ Optimization techniques applicable to 

other systems
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[Github]: https://github.com/the-data-lab

Thank You

Q & A
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