

Optimization of GNN Training Through Half-precision

Arnab Kanti Tarafder, Yidong Gong, Pradeep Kumar William & Mary

Graph Neural Networks(GNN)

GNN applications are widely used: GCN, GIN, GAT, etc.

Social Network

Transportation

Biomedical

Financial Risk Detection

Recommendation System

Credit: Google Image

1-Page Summary

Half-precision GNN training

- Suffers from overflow/abnormal accuracies
- Poor Kernel performance in half-precision

Not much prior work

Training GNN in lower-precision

We introduce HalfGNN

- Strong baseline for GNN training & kernels
- Discretized Non-atomic SpMM for handling overflow
- Better data load/compute/store using Half2 datatype
- Proposed Half4/Half8 data-type for even better data-load/store

Outline

- Background: Half-Precision, SpMM, SDDMM
- Investigation: Accuracy & Performance
- Contributions
 - Discretized SpMM
 - Faster Load/Store/Compute
 - Non-Atomic Kernel Design
- Evaluation

Background

- Float/Single-precision: 32 bits
- Half-precision: 16 bits
- Half2:
 - 2 half-precision data in 32 bits

16 bits

half datatype

Background: SpMM $(Y = A_w X)$

Graph

CSR format

Row ID Column ID

,	0	1	1	2	2	2	3	4
כ	W ₀₂	W ₁₂	W ₁₄	W ₂₀	W ₂₁	W ₂₃	W ₃₂	W ₄₁

COO format

Sparse input matrix Aw

Dense output matrix Y

SpMM

Background: SDDMM (W = $A \odot (YX^T)$)

Graph

Dense input matrix Y Spa

Sparse input matrix A

Sparse Output matrix Aw

SDDMM

Outline

- Background: Half-Precision, SpMM, SDDMM
- Investigation: Accuracy & Performance
- Contributions
 - Discretized SpMM
 - Faster Load/Store/Compute
 - Non-Atomic Kernel Design
- Evaluation

Investigation: Abnormal Accuracy

DGL can not train GCN, GIN in half-precision (16 bits)

Poor accuracy of DGL in half-precision

Investigation: Poor Performance

- DGL half-precision SpMM kernels are slower than float-based kernels
 - DGL uses Cusparse for SpMM
- DGL SDDMM does not gain any performance for half-precision

Half-precision SpMM is significantly slower

Similar SDDMM runtime

Investigation: Value Overflow

GCN:
$$\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} (\mathbf{H}^{(l)} \mathbf{W}^{(l)}) \right) \qquad \text{GIN:} \quad h_u = \phi \left((1 + \epsilon) \cdot x_u + \sum_{v \in N_v} x_v \right)$$

Overflow:

- During aggregation of SpMM for a single vertex before normalization
- During addition of self-features to SpMM in GIN
- o Even for relatively small sized datasets, half-precision gets out of range

Investigation: Mixed-Precision System API

- Mixed-precision allows half-precision integration in DGL
 - All state tensors in 16 bits, Master weight updates in 32 bits
 - Pytorch backend 'fears numerical instability' and avoids half-precision:
 - o exp, softmax in GAT are invoked in float
- Once one of these OPs are encountered,
 - The rest of the compute are in float
 - Or one more data-conversion from float to half-precision

https://pytorch.org/docs/stable/amp.html

Outline

- Background: Half-Precision, SpMM, SDDMM
- Investigation: Accuracy & Performance
- Contributions
 - Discretized SpMM
 - Faster Load/Store/Compute
 - Non-Atomic Kernel Design
- Evaluation

Contribution: Discretized SpMM

- Apply normalization after each warps' computation, rather than after the gather of each vertex
 - Normalization after maximum of 128 edges per warp
 - Applied to both GCN, GIN

SpMM

Discretized SpMM

Contribution: Removal of Overflow Fear for GNN

• GAT Softmax:
$$m_i = \max_{j \in \mathcal{N}_i} (e_{ij}), e'_{ij} = \exp(e_{ij} - m_i)$$
 $\alpha_{ij} = \frac{e'_{ij}}{\sum_{j \in \mathcal{N}_i} (e'_{ij})}$

- Impossible to overflow in half-precision
- HalfGNN:
 - Ensures all the kernels in backend run in half-precision
 - Automatic, and integrated in the API

Contribution: Faster Load/Store/Compute

half2, half4, half8

- Interchangeable during load/store for float, float2 and float4
- GNNONE (HPDC'24) exploited float4 load for SDDMM
- Increase per thread throughput
 - e.g., 8 ops (+, -, /, *, max, min) in one op during half8
 - Reduces inter-thread communication during tree-reduce of SDDMM
 - Reduction in synchronization steps for SDDMM

Contribution: Faster Load/Store/Compute

Outline

- Background: Half-Precision, SpMM, SDDMM
- Investigation: Accuracy & Performance
- Contributions
 - Discretized SpMM
 - Faster Load/Store/Compute
 - Non-Atomic Kernel Design
 - Generality of the Solution
- Evaluation

SpMM with Atomic Writes

Contribution: Non-atomic Design

2 Stage Edge-Parallel Kernel Design:

- Use the 1st stage to perform
 - Data load, Discretized reduction in SpMM
 - Reduce Intra-CTA & Inter-CTA conflict
 - Use shared memory to communicate among warps
 - Update temporary buffer (Carryout Buffer)
- Use stage 2 kernel to write in destination vertices non-atomically
 - Destination vertices can be pre-calculated without overhead in parallel manner

Contribution: Non-atomic Design

To Staging Buffer & Inter-CTA Conflict Resolution (Follow-up Kernel)

Non-atomic Design of SpMM with Carry-out Buffer

Contribution: Generality of the Solution

- Applicable to other systems
 - Vector load/store/compute
 - Non-atomic reduction & write
 - Reduced inter-thread parallelism
 - Improved feature-parallelism through increasing thread operations
- Can Improve Vertex-Parallel Work

Outline

- Background: Half-Precision, SpMM, SDDMM
- Investigation: Accuracy & Performance
- Contributions
 - Discretized SpMM
 - Faster Load/Store/Compute
 - Non-Atomic Kernel Design
- Evaluation

Evaluation

➤ GNN Training:

• GCN: 2 layers

• GIN: 5 layers

• GAT: 3 layers with 1 head

• Hidden dim = 64

> Evaluation Platform:

All studies are based on Nvidia A100 GPU

Graph	Vertex	Edge	F	С
Dataset	Count	Count		
Cora (G1)*	2,708	10,858	1,433	7
Citeseer (G2)*	3,327	9,104	3,703	6
PubMed (G3)*	19,717	88,648	500	3
Amazon (G4)	400,727	6,400,880	150	7
Wiki-Talk (G5)	2,394,385	10,042,820	150	7
RoadNet-CA (G6)	1,971,279	11,066,420	150	7
Web-BerkStand (G7)	685,230	15,201,173	150	7
As-Skitter (G8)	1,696,415	22,190,596	150	7
Cit-Patent (G9)	3,774,768	33,037,894	150	7
Sx-stackoverflow (G10)	2,601,977	95,806,532	150	7
Kron-21 (G11)	2,097,152	67,108,864	150	7
Hollywood09 (G12)	1,069,127	112,613,308	150	7
Ogb-product (G13)*	2,449,029	123,718,280	100	47
LiveJournal (G14)	4,847,571	137,987,546	150	7
Reddit (G15)*	232,965	114,848,857	602	41
Orkut (G16)	3,072,627	234,370,166	150	7

Evaluation: Training Accuracy and Memory consumption

HalfGNN achieves the same accuracy as DGL float

HalfGNN reduces required memory during training

Evaluation: Training Runtime

➤ HalfGNN achieves 2.44x, 3.84x, and 2.42x avg. speedup for GCN, GAT, and GIN over DGL-half

➤ HalfGNN achieves 1.85x, 3.55x, and 1.78x avg. speedup for GCN, GAT, and GIN over DGL-float

Evaluation: Kernel Speedup

SpMM:

➤ HalfGNN achieves 22.89x (avg.) speedup over DGL-half

SDDMM:

➤ HalfGNN achieves 7.12x (avg.) speedup over DGL-half

Evaluation: SpMM Hardware Utilization

SM utilization:

> HalfGNN: 72.96 %

> DGL float: 50.81 %

> DGL half : 21.58 %

Memory bandwidth utilization:

➤ HalfGNN: 80.92 %

➤ DGL float: 51.99 %

➤ DGL half : 20.22 %

Evaluation: SDDMM Bandwidth Utilization

Memory Bandwidth Utilization:

> HalfGNN: 83.71 %

➤ DGL-float: 50.59 %

➤ DGL-half : 50.85 %

Evaluation: Half8 vs Half2 for SDDMM

■ Half8 vs Half2 SDDMM

Half8 in SDDMM reduces synchronization bottleneck

Evaluation: Generality of Optimizations

☑ Huang original vs Huang half2

Huang-float vs Huang-half2 speedup: On average gains 1.79x speedup.

Take Away

- ✓ Half-precision can provide significantly faster SpMM, SDDMM kernels
- ✓ Strong new baseline in GNN training
- ✓ Optimization techniques applicable to other systems

[Github]: https://github.com/the-data-lab

Thank You

Q&A

