





# FT2: <u>First-Token-Inspired Online Fault Tolerance on</u> Critical Layers for Generative Large Language Models

Yu Sun<sup>§</sup>, Zhu Zhu<sup>§</sup>, Cherish Mulpuru<sup>§</sup>, Roberto Gioiosa<sup>‡</sup>, Zhao Zhang<sup>†</sup>, Bo Fang<sup>‡</sup>, and Lishan Yang<sup>§</sup>

§George Mason University

‡Pacific Northwest National Lab

†Rutgers University

Email: ysun23@gmu.edu

#### Generative Large Language Models (LLM)







**Translation** 









#### Soft Error



Cosmic ray





Neutrons hit silicon die



#### Soft Error

There are several consequences...

Text: As of August 2010, Victoria had 1,548 public schools, 489 Catholic schools and 214 independent schools..... Victoria has about 63,519 full-time teachers.

Question: How many full-time teachers does Victoria have?

Reference: 63,519

Fault-free Answer: Victoria has about 63,519 full-time teachers.

Answer with Fault Injection: The number of full-time teachers in Victoria is 63,519.

Answer with Fault Injection: The number is 1548.

**SDC!** (Silent Data Corruption)

Harmful and hard to detect

### **Existing Protection**

TMR: Triple Modular Redundancy

ABFT: Algorithm-Based Fault Tolerance



*High overhead for LLMs* → Larger



Ranger!

#### Ranger



| Layer | Max | Min |
|-------|-----|-----|
| 1     | -4  | 3   |
| 2     | -3  | 8   |
| 3     | -1  | 5   |
| 4     | -2  | 6   |



Two limitations to apply on LLMs



Insufficient protection Require bound profiling

#### Limitation 1:

#### Insufficient Protection

Different layers



#### If choose layer unwisely

Undesirable SDC rate reduction



#### Limitation 2:

## **Bound Profiling**

Lack of training datasets

High profiling cost





For these two limitations to apply Ranger on LLMs

### How to overcome?

- Lack of training dataset
- High profiling cost

## Our Methodology: FT2

FT2: <u>First-Token-Inspired Online</u> <u>Fault Tolerance on Critical Layers</u>

- Better Protection
- No profiling required



### Identify Critical Layers



Critical layers: High SDC rate if not specifically protected



Protect all — High overhead

 $\times N$ 

Which layers are critical?

#### - Fault injection experiments



Model: GPTJ-6B Dataset: SQuAD2.0 Fault model: 1-bit

Why Critical?

### Identify Critical Layers



#### There are two types of abnormal values caused by bit flips

1 Extreme value







② Not a number (NaN)







## **Identify Critical Layers**

Model analysis: Critical Layer Identification

Following Tokens

Obtain Bounds

Record Max/Min Values

Scale Bounds

Scale Bounds

Inference

Generating
First Token

Following Tokens

Scale Bounds

Bounds

Error Detection

Correct
Abnormal Values

- Different neuron value distributions
  - Scaling operations

A heuristic: a layer is critical if no scaling operation or activation layer is behind.





#### Obtain Bounds Online



- Obtain bounds from the first token generation
  - Input → *Longer*
  - Information → More
  - Bounds → More accurate
- The impact of not protecting this process is negligible





The percentage of execution time is low

The resilience is high

### Evaluation: Experimental Set-up

| Model Name | # of Parameters | Task Type |
|------------|-----------------|-----------|
| OPT-6.7B   | 6.66B           | QA        |
| OPT-2.7B   | 2.65B           | QA        |
| GPTJ-6B    | 6.05B           | QA        |
| Llama2-7B  | 6.74B           | QA/MATH   |
| Vicuna-7B  | 6.74B           | QA        |
| Qwen2-7B   | 7.62B           | QA/MATH   |
| Qwen2-1.5B | 1.54B           | QA        |

- 7 models covering 2 architectures
- 3 datasets from 2 tasks
- *Datatype*: FP16 and FP32
- 2 GPU configurations: NVDIA A100 and H100 GPU
- 3 fault models: 1-bit, 2-bit and EXP















- FT2 outperforms all baselines among all models, datasets, and fault models
- The average SDC rate reduction is 92.92%

#### **Evaluation: Overhead**



- FT2 introduces 3.42% runtime overhead on average
- Memory overhead is negligible (288 512 Bytes, <0.2% for all models)</li>

#### Conclusion

- LLMs suffer from soft errors
  - Leads to SDC → Harmful and hard to detect
- Ranger has limitations applying to LLMs
  - Insufficient protection
  - Require bound profiling
- Our method: FT2
  - Identify and protect critical layers → high efficiency and low overhead
  - Obtain bounds during first token generation → no offline profiling
- Achieve 92.92% SDC rate reduction
- Only 3.42% overhead on average
- Code at <a href="https://github.com/pipijing13/FT2-LLM-inference-protection">https://github.com/pipijing13/FT2-LLM-inference-protection</a>





## Thank you



**Pacific Northwest** 

# FT2: <u>First-Token-Inspired Online Fault Tolerance on</u> Critical Layers for Generative Large Language Models











§George Mason University

<sup>‡</sup>Pacific Northwest National Lab

<sup>†</sup>Rutgers University



Email: ysun23@gmu.edu

This work is supported by NSF grants (#2402940 and #2410856), CCI grant (#HC-3Q24-047), DOE award 66150, and DOE Contract DE-AC05-76RL01830. The computation resources are provided by the Office of Research Computing at George Mason University (funded by NSF grant #2018631) and the Texas Advanced Computing Center (TACC).



#### Resilience Estimation

ALUs: Arithmetic Logic Units ECC: Error Correction Code

- Computational faults
- Affect computational hardware components such as ALUs
- Memory faults are protected by ECC
- Fault models
- <u>1-bit</u>: single-bit flip
- <u>2-bit</u>: double-bit flip
- *EXP*: single-bit flip in **Exponent** bits (most severe)
- Inference phase
- Fault injection
- Into neurons which represent computation results
- Random select fault sites (block, layer, neuron, bit)

### **Apply Protection**



Scale the bounds



- Clip to bounds



### **Evaluation: Data Type**

FT2 can effectively protect both FP16 and FP32 LLM inference

(Animations here)



## Evaluation: GPU Configurations

FT2 is feasible among different generations of NVIDIA GPUs (A100 and H100)

(Animations here)

