AutoSSD: CXL-Enhanced Autonomous SSDs for Low Tail Latency

Mingyao Shen[†], Heewoo Kim[‡], Suyash Mahar[†], Joseph Izraelevitz[‡], Steven Swanson[†] [†]UC San Diego, [‡]University of Colorado, Boulder

> HPDC 2025 2025/07/21

Outline

- Background and Motivation
- Problems
- Solutions
- Evaluation & Conclusion

Outline

- Background and Motivation
- Problems
- Solutions
- Evaluation & Conclusion

Compute Express Link (CXL) is Here

Standard for high-speed

communication

• Three sub-protocols

- CXL.io
- CXL.mem
- CXL.cache

Representative CXL Usage*

Compute Express Link (CXL) is Here

- Standard for high-speed communication
- Three sub-protocols
- Provides cache-coherent memory access
 - CPU to device
 - Device to CPU
 - Device to device

CXL P2P Memory Access*

Device Collaboration Enabled

But why?

How to build systems to exploit new capability?

OS on CPU in Charge Now

Peripherals are managed as black boxes

OS on CPU in Charge Now

Peripherals are managed as black boxes

OS on CPU in Charge Now

Peripherals are managed as black boxes

SSD Tail Latency Problem

- SSD's performance jitters
 - Garbage collection
 - Wear leveling
- SSD RAID's tail latency is worse
 - One operation touches multiple
 SSDs
 - Any SSD's spike latency affects the whole operation

Sample spike behavior in write tests on an SSD (write request size at 64KB).

Source: Figure 4(a) from FusionRAID

SSDs	Median latency (ms)	Avg. latency (ms)	P99 latency (ms)	P999 latency (ms)
SSD o	0.049	0.68	0.42	24.4
SSD 1	0.049	1.26	0.46	702.24
SSD 2	0.05	0.63	0.39	30.16
SSD 3	0.049	1.64	0.53	895.02
SSD 4	0.05	1.71	0.64	827.91

Application Exchange latency, individual aged SSDs within RAID.

 $Source: Table\ 2\ from\ Fusion RAID$

• Devices can collaborate

Straightforward Solution

Write operation: redirect

Read operation: redirect

Outline

- Background and Motivation
- Problems
- Solutions
- Evaluation & Conclusion

Problems

- Replication Overhead
- Block Tracking
- CPU Centric
- Redirection Performance

Problem 1: Replication Overhead

Write to Original Block SSD SSD SSD SSD SSD SSD 5 1 2 3 4 5

Problem 1: Replication Overhead

- Hurt normal write performance
- Duplication wastes space

Read operation: redirect

Problem 2: Block Tracking

Write operation: redirect

Problem 2: Block Tracking

- Memory footprint
- Concurrent map update

Problem 3: CPU Centric

- Interference with normal work
 - Monitoring
 - Redirection
- SSD's internal state unknown
 - Late redirecting
 - Late resuming

Problem 3: CPU Centric

- Interference with normal work
 - Monitoring
 - Redirection
- SSD's internal state unknown
 - Late redirecting
 - Late resuming
- Not scalable

Problem 4: Redirection Performance

- CPU: duplicate request
 - Shouldn't remove requests
 - Waste bandwidth

Problem 4: Redirection Performance

- CPU: duplicate request
 - Shouldn't remove requests
 - Waste bandwidth
- SSD: DMA not suitable
 - Initialization and setup overhead
 - Interrupt notification

Outline

- Background and Motivation
- Problems
- Solutions
- Evaluation & Conclusion

CXL-based SSD Autonomic and Collaborative Scheduling

CXL-based

High-performance communication

CXL-based SSD Autonomic and Collaborative Scheduling

- CXL-based
 - High-performance communication
- SSD autonomic
 - Stop polling when busy
 - Redirect / rebuild

CXL-based SSD Autonomic and Collaborative Scheduling

- CXL-based
 - High-performance communication
- SSD autonomic
 - Stop polling when busy
 - Redirect / rebuild
- Share status
 - Flag busy to stop requests
 - No redirection when backup busy

Solutions

- Replication Overhead -> RAID Rebuild
- Block Tracking -> Stack + Dynamic Block Mapping
- CPU Centric -> CPU + SSD Collaboration
- Redirection Performance -> CXL Based Data Sharing

Solutions

- Replication Overhead -> RAID Rebuild
- Block Tracking -> Stack + Dynamic Block Mapping
- CPU Centric -> CPU + SSD Collaboration
- Redirection Performance -> CXL Based Data Sharing

Using RAID Rebuild for Read

Read operation: rebuild

Additional Read Req

Solutions

- Replication Overhead -> RAID Rebuild
- Block Tracking -> Stack + Dynamic Block Mapping
- CPU Centric -> CPU + SSD Collaboration
- Redirection Performance -> CXL Based Data Sharing

Static + Dynamic Block Mapping

- Deterministic block mapping calculation
- N (N <= stripe size)
 backup blocks for
 one stripe

Static + Dynamic Block Mapping

- Deterministic block mapping calculation
- N (N <= stripe size)
 backup blocks for
 one stripe
- Dynamically tracking redirected data

Solutions

- Replication Overhead -> RAID Rebuild
- Block Tracking -> Stack + Dynamic Block Mapping
- CPU Centric -> CPU + SSD Collaboration
- Redirection Performance -> CXL Based Data Sharing

• SSD autonomic

- SSD autonomic
 - Stop polling when busy
 - Redirect / rebuild

- SSD autonomic
 - Stop polling when busy
 - Redirect / rebuild
- Share status

- SSD autonomic
 - Stop polling when busy
 - Redirect / rebuild
- Share status
 - Flag busy to stop requests
 - No redirection when backup busy

Solutions

- Replication Overhead -> RAID Rebuild
- Block Tracking -> Stack + Dynamic Block Mapping
- CPU Centric -> CPU + SSD Collaboration
- Redirection Performance -> CXL Based Data Sharing

CXL Based Data Sharing

- Communication through high-performance shared memory
- Optimized data structures

Outline

- Background and Motivation
- Problems
- Solutions
- Evaluation & Conclusion

Evaluation

- Dual socket machine
- Remote socket as CXL memory

Evaluation

- Dual socket machine
- Remote socket as CXL memory
- ~15% and ~45% decreased P99 latency for random reads and writes

Evaluation

- Dual socket machine
- Remote socket as CXL memory
- ~15% and ~45% decreased P99 latency for random reads and writes

Conclusion

CXL shared memory provides chances for devices' collaboration

Conclusion

- CXL shared memory provides chances for devices' collaboration
- SSDs can utilize it to improve their tail latency
 - Internal status sharing
 - Autonomic decision making
 - Collaboration

Conclusion

- CXL shared memory provides chances for devices' collaboration
- SSDs can utilize it to improve their tail latency
 - Internal status sharing
 - Autonomic decision making
 - Collaboration
- Other peripherals could also exploit it

Questions

Q&A

