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Motivation: Sparse Computations on GPUs
• GPUs 

§ Excel at dense, regular tasks 
§ Struggle with sparse ones like SpMM* (𝐶 = 𝐴 ⋅ 𝐵, 𝐴 

sparse, 𝐶 and 𝐵 dense)

• Challenges
§ Irregular memory access
§ Load imbalance
§ Warp divergence

• Key
§ Choosing right sparse format is crucial, but matrices 

vary in sparsity—single format often suboptimal

• Existing issues
§ Fixed formats lack flexibility
§ Composable formats require costly tuning
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Background: Sparse Formats

• Elementwise formats
§ COO, CSR, Ellpack (ELL)

• Blockwise formats
§ BCSR, Blocked-ELL, Sliced-ELL

• Benefits of blocks
§ Shared memory reuse
§ Aligned access
§ Loop unrolling

• Drawbacks
§ Padding ratio up to 99% → 

memory explosion
§ Less flexible for various sparsity
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Blocked Ellpack Format
https://docs.nvidia.com/cuda/cusparse/index.html#blocked-ellpack-blocked-ell



Prior Work and Limitations

• Fixed Formats
§ cuSPARSE, Triton, etc
§ Optimized but input-dependent

• Auto-Selection
§ Auto-SpMV, Seer, etc
§ Machine learning (ML) picks 

format but ignores intra-matrix 
sparsity variations

• Composable Formats
§ SparseTIR, STile
§ Adapt to patterns but high 

construction overhead (auto-
tuning/microbenchmarks)
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Type Work

Auto 
Format 

Selection
Sparsity 
Aware

Format 
Construction 

Overhead

Fixed Formats cuSPARSE[1], 
Triton[2], etc. ❌ ❌ Low

Auto-Selection Auto-SpMV[3],
Seer[4], etc. ✅ ❌ Low

Composable 
Formats

SparseTIR[5], 
STile[6]

❌
✅

✅ High

Low✅ ✅LiteForm (ours)

[1] NVIDIA, cuSPARSE
[2] P. Tillet, et al., Triton, MAPL 2019
[3] M. Ashoury, et al., Auto-SpMV, arXiv 2023
[4] R. Swann, et al., Seer, CGO 2024
[5] Z. Ye, et al., SparseTIR, ASPLOS 2023
[6] J. Fang, et al., STile, PACMMOD 2024



Overview of LiteForm

• Lightweight framework for automatic format 
composition for SpMM

• LiteForm’s Composable Format
§ CELL (Composable Ellpack) format
§ 3-level blockwise: partitions, buckets, blocks

• LiteForm’s Workflow
§ ML predicts if CELL > fixed formats
§ ML sets partition count
§ Cost model + search optimizes bucket widths

• Contributions
§ CELL design
§ ML predictors and cost model
§ No runtime auto-tuning
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Composable Ellpack (CELL) Format Design

• 3 Levels:
§ Columns → Partitions (even divide, reduce padding)
§ Rows → Buckets (group by row length 𝑙 that 2!"# < 𝑙 ≤ 2!)
§ Elements → Blocks (2$"!	rows, fixed non-zeros 2$	, map to GPU thread blocks)

• Flexible buckets per-partition
• Balancing non-zeros in blocks 6
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Automatic Format Composition

• Step 1: ML assesses CELL, predicts if >1.1x speedup over CSR and BCSR
• Step 2: ML classifier predicts number of partitions
• Step 3: Use a cost Model and search for bucket widths (see in the next slide)
• Training: run SpMM on formats to collect best execution time and 

configuration. 
§ Overhead is amortized over future uses
§ Use Random Forest after evaluation
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Sparse matrix features to predict format
Number of rows
Number of columns
Number of non-zero elements
Average number of non-zeros per row
Minimum number of non-zeros per row
Maximum number of non-zeros per row
Standard deviation of non-zeros per row

Sparse matrix features to predict number of partitions
Number of rows
Number of columns
Number of non-zero elements
Average density of non-zeros per row
Minimum density of non-zeros per row
Maximum density of non-zeros per row
Standard deviation of non-zeros density per row
Product of other dimensions in the kernel



Optimizing Bucket Widths
• The max bucket width trade-off:

§ Larger widths → 👍 fewer row index accesses, coarser workloads, 🚨 more zero padding
§ Smaller widths → 👍 less zero padding, 🚨 more index accesses, more atomic writing

8

0 a

1

2 b c

3 d e f g

0 a

*

*

*

2 b c

*

3 d e f g

Buckets when max width is 4

An illustration of how the maximum bucket width influence the distribution of non-zero 
elements.
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• Memory-centric cost model
𝑐𝑜𝑠𝑡(𝑥) = 2	 ∗ 	(𝑟𝑜𝑤𝑠	𝑖𝑛	𝑏𝑢𝑐𝑘𝑒𝑡	 ∗ 	𝑤𝑖𝑑𝑡ℎ)	for 𝐴
 + 𝑢𝑛𝑖𝑞𝑢𝑒	𝑐𝑜𝑙𝑢𝑚𝑛𝑠	 ∗ 	𝐽	for 𝐵
             + 𝐴𝑡𝑜𝑚𝑖𝑐	 ∗ 	 (𝑟𝑜𝑤𝑠	𝑖𝑛	𝐶	 ∗ 	𝐽) for 𝐶

• Use a search algorithm to find optimal widths



Implementation and Evaluation

• Built on SparseTIR and TVM; Use scikit-learn for ML model (Random Forest)
• Hardware: NVIDIA V100 GPU
• Baselines: cuSPARSE, Triton, Sputnik, dgSPARSE, TACO, SparseTIR, STile
• Datasets: 7 GNN graphs + 1,351 SuiteSparse matrices
• Metrics: Speedup, overhead
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Graph #nodes #edges Density
cora 2,708 10,556 1.44E-03
citeseer 3,327 9,228 8.34E-04
pubmed 19,717 88,651 2.28E-04
ppi 44,906 1,271,274 6.30E-04
arxiv 169,343 1,166,243 4.07E-05
proteins 132,534 39,561,252 2.25E-03
reddit 232,965 114,615,892 2.11E-03
SuiteSparse 2.0K–3.8M 3.1K–300.9M 8.7E-07–0.1



Performance Evaluation (GNN Graphs)

• LiteForm achieved 2.06X geometric mean speedup over cuSPARSE, 1.26X 
over SparseTIR, and 1.52X over STile
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Performance Evaluation (SuiteSparse Graphs)

• LiteForm achieved 0.99X geometric mean speedup over SparseTIR
• SparseTIR used auto-tuning to determine the optimal configuration
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Overhead Evaluation (GNN Graphs)

• SparseTIR: auto-tuning
• STile: microbenchmarking
• LiteForm: inference and searching (not including training)
• SparseTIR has 65.5X geometric mean overhead, STile has 42.3X 12



Overhead Evaluation (SuiteSparse Graphs)

• SparseTIR has 1150.2X geometric mean overhead
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Limitations of LiteForm

• Needs collecting historical performance data, and requires model retraining 
for new architectures and kernels

• Historical data may not cover extreme cases, such as a large number of 
partitions, and extremely wide buckets

• Has not utilized Tensor Cores, or multiple GPUs
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Conclusion

• LiteForm: a lightweight and automatic format composition framework for 
SpMM on GPUs

• Propose the Composable Ellpack (CELL) format with a 3-level blockwise 
design

• Utilize ML models and a cost model for automatic composition
• Eliminate the need for runtime auto-tuning
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Thank you!

Zhen Peng
zhen.peng@pnnl.gov



• Backup slides
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Cost Model

• For 𝐶!" 	= 	𝐴!# ⋅ 𝐵#", the cost of bucket is measured as memory accesses to 
matrix 𝐴, 𝐵, and 𝐶 (dimensions 𝐼, 𝐽, 𝐾)

• 𝐶𝑜𝑠𝑡 𝑥 = 𝑐𝑜𝑠𝑡(%) 𝑥 + 𝑐𝑜𝑠𝑡(') 𝑥 + 𝑐𝑜𝑠𝑡(() 𝑥
      = 	2 ⋅ 𝐼 % 𝑊	 + 𝑠𝑒𝑡 𝐼𝑛𝑑 𝑖, 𝑤 𝐽	 + 	𝐴𝑡𝑜𝑚𝑖𝑐 ⋅ 𝐼(')𝐽

§ 𝐼 # : the number of rows in the bucket of matrix 𝐴
§ 𝐼(&): the number of corresponding rows in 𝐶. 𝐼 #  can > 𝐼(&) because of folded rows in 𝐴
§ 𝑊: the bucket width
§ 𝑠𝑒𝑡 𝐼𝑛𝑑 𝑖, 𝑤 : the set of unique column indices

§ 𝐴𝑡𝑜𝑚𝑖𝑐: weight of atomic operation, can be set as 𝐴𝑡𝑜𝑚𝑖𝑐 = ( !

((#)	

• Bucket width ↗ (larger 𝑊) → 𝑐𝑜𝑠𝑡(') ↗ ( 𝑠𝑒𝑡 𝐼𝑛𝑑 𝑖, 𝑤  larger), but 𝑐𝑜𝑠𝑡(() 𝑥  
↘ (𝐴𝑡𝑜𝑚𝑖𝑐 ⋅ 𝐼(') and 𝐼 % 	smaller)

• Bucket width ↘ (smaller 𝑊) → 𝑐𝑜𝑠𝑡(') ↘ ( 𝑠𝑒𝑡 𝐼𝑛𝑑 𝑖, 𝑤  smaller), but 
𝑐𝑜𝑠𝑡(() 𝑥  ↗ (𝐴𝑡𝑜𝑚𝑖𝑐 ⋅ 𝐼(') and 𝐼 % 	larger) 17



Prediction Evaluation (Predict CELL)

• Used 80% of 514 matrices as the training set and the other 20% as the test 
set

• Random Forest achieved the best accuracy
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Figure 7: Normalized speedup of LiteForm relative to optimal-
tuned SparseTIR using 1,351 matrices with at least 2,000
nodes and varying sparsity patterns from the SuiteSparse
matrix collection.

of 0.99⇥ that of optimal-tuned SparseTIR, with speedups ranging
from 0.19⇥ to 5.21⇥. The CELL format is designed to handle di-
verse sparsity patterns across di�erent sections of a matrix, making
it particularly useful in domains like machine learning, scienti�c
simulations, and graph processing. However, it may not always
be advantageous to use CELL in cases where the input matrix ex-
hibits a uniform or highly regular sparsity pattern, such as densely
structured blocks.

7.2 Format Construction Overhead
For sparse inputs in the sparse deep learning domain, we evaluated
the overhead of sparse format construction for SparseTIR, STile,
and LiteForm. The results are shown in Figure 8. Overall, the over-
head introduced by LiteForm is an order of magnitude lower than
the other two methods, with SparseTIR and STile experiencing
geometric mean overhead 65.5⇥ and 42.3⇥, respectively. SparseTIR
requires an extensive auto-tuning process to �nd the optimal for-
mat composition, while the overhead in STile stems from executing
microbenchmarks to search for the best format composition for
each matrix. In contrast, LiteForm’s overhead primarily comes from
three sources: 1) the inference cost of the ML model to determine
if the CELL format outperforms a �xed blockwise format, 2) the
inference cost for predicting the optimal number of partitions, and
3) the search cost for determining the optimal bucket width. We

Table 5: Overhead and accuracy of the tested ML models for
predicting performance improvement of CELL format.

name training(s) inference(s) accuracy precision recall f1
Random Forest 0.2859 0.0079 88.92% 88.92% 88.92% 88.92%
KNeighbors 0.0024 0.0127 79.31% 79.31% 79.31% 79.31%
Linear SVM 0.0849 0.0098 67.00% 67.00% 67.00% 67.00%
RBF SVM 0.0856 0.0199 73.40% 73.40% 73.40% 73.40%
Gaussian Process 346.2509 0.0697 84.24% 84.24% 84.24% 84.24%
Decision Tree 0.0292 0.0004 85.96% 85.96% 85.96% 85.96%
Neural Net 2.8343 0.0016 66.50% 66.50% 66.50% 66.50%
AdaBoost 0.1828 0.0079 86.45% 86.45% 86.45% 86.45%
Naive Bayes 0.0018 0.0004 63.30% 63.30% 63.30% 63.30%
QDA 0.0022 0.0004 66.75% 66.75% 66.75% 66.75%

Figure 8: Overhead comparison: SparseTIR’s auto-tuning pro-
cess, STile’s format searching mechanism, and LiteForm’s
format construction process.

Figure 9: Overhead comparison: SparseTIR’s auto-tuning pro-
cess and LiteForm’s format construction process.

argue that the time spent generating training data and training ML
models can be amortized over future executions.

Figure 9 shows the overhead comparison using SuiteSparse ma-
trices between SparseTIR and LiteForm. In most cases, SparseTIR’s
auto-tuning overhead is orders of magnitude larger than LiteForm’s
inference and searching overhead. Overall, the geometric mean ra-
tio of SparseTIR’s overhead to LiteForm’s is 1150.2⇥.

Table 6: Overhead and accuracy of the tested ML models for
predicting the optimal number of partitions in the CELL
format. cos_sim stands for cosine similarity.

name training(s) inference(s) accuracy precision recall f1 cos_sim
Random Forest 0.4778 0.0127 87.30% 87.30% 87.30% 87.30% 0.77
KNeighbors 0.0046 0.0321 82.98% 82.98% 82.98% 82.98% 0.23
Linear SVM 0.2273 0.0244 82.45% 82.45% 82.45% 82.45% 0.25
RBF SVM 0.5688 0.0692 82.56% 82.56% 82.56% 82.56% 0.25
Gaussian Process 1481.1395 24.0115 82.56% 82.56% 82.56% 82.56% 0.25
Decision Tree 0.0200 0.0005 85.40% 85.40% 85.40% 85.40% 0.77
Neural Net 3.0432 0.0017 82.45% 82.45% 82.45% 82.45% 0.25
AdaBoost 0.1952 0.0106 82.13% 82.13% 82.13% 82.13% 0.25
Naive Bayes 0.0025 0.0008 56.41% 56.41% 56.41% 56.41% 0.29
QDA 0.0036 0.0011 0.21% 0.21% 0.21% 0.21% 0.25



Prediction Evaluation (Predict Num. of Partitions)

• Random Forest achieved the best accuracy
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Figure 7: Normalized speedup of LiteForm relative to optimal-
tuned SparseTIR using 1,351 matrices with at least 2,000
nodes and varying sparsity patterns from the SuiteSparse
matrix collection.

of 0.99⇥ that of optimal-tuned SparseTIR, with speedups ranging
from 0.19⇥ to 5.21⇥. The CELL format is designed to handle di-
verse sparsity patterns across di�erent sections of a matrix, making
it particularly useful in domains like machine learning, scienti�c
simulations, and graph processing. However, it may not always
be advantageous to use CELL in cases where the input matrix ex-
hibits a uniform or highly regular sparsity pattern, such as densely
structured blocks.

7.2 Format Construction Overhead
For sparse inputs in the sparse deep learning domain, we evaluated
the overhead of sparse format construction for SparseTIR, STile,
and LiteForm. The results are shown in Figure 8. Overall, the over-
head introduced by LiteForm is an order of magnitude lower than
the other two methods, with SparseTIR and STile experiencing
geometric mean overhead 65.5⇥ and 42.3⇥, respectively. SparseTIR
requires an extensive auto-tuning process to �nd the optimal for-
mat composition, while the overhead in STile stems from executing
microbenchmarks to search for the best format composition for
each matrix. In contrast, LiteForm’s overhead primarily comes from
three sources: 1) the inference cost of the ML model to determine
if the CELL format outperforms a �xed blockwise format, 2) the
inference cost for predicting the optimal number of partitions, and
3) the search cost for determining the optimal bucket width. We

Table 5: Overhead and accuracy of the tested ML models for
predicting performance improvement of CELL format.

name training(s) inference(s) accuracy precision recall f1
Random Forest 0.2859 0.0079 88.92% 88.92% 88.92% 88.92%
KNeighbors 0.0024 0.0127 79.31% 79.31% 79.31% 79.31%
Linear SVM 0.0849 0.0098 67.00% 67.00% 67.00% 67.00%
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Gaussian Process 346.2509 0.0697 84.24% 84.24% 84.24% 84.24%
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Neural Net 2.8343 0.0016 66.50% 66.50% 66.50% 66.50%
AdaBoost 0.1828 0.0079 86.45% 86.45% 86.45% 86.45%
Naive Bayes 0.0018 0.0004 63.30% 63.30% 63.30% 63.30%
QDA 0.0022 0.0004 66.75% 66.75% 66.75% 66.75%

Figure 8: Overhead comparison: SparseTIR’s auto-tuning pro-
cess, STile’s format searching mechanism, and LiteForm’s
format construction process.

Figure 9: Overhead comparison: SparseTIR’s auto-tuning pro-
cess and LiteForm’s format construction process.

argue that the time spent generating training data and training ML
models can be amortized over future executions.

Figure 9 shows the overhead comparison using SuiteSparse ma-
trices between SparseTIR and LiteForm. In most cases, SparseTIR’s
auto-tuning overhead is orders of magnitude larger than LiteForm’s
inference and searching overhead. Overall, the geometric mean ra-
tio of SparseTIR’s overhead to LiteForm’s is 1150.2⇥.

Table 6: Overhead and accuracy of the tested ML models for
predicting the optimal number of partitions in the CELL
format. cos_sim stands for cosine similarity.

name training(s) inference(s) accuracy precision recall f1 cos_sim
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KNeighbors 0.0046 0.0321 82.98% 82.98% 82.98% 82.98% 0.23
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Cost Model Evaluation

• Tested the reddit data set
• The bucket width influence the cost value from the cost model
• When the cost value is the lowest, the GPU compute throughput reaches the 

highest and the execution time is the shortest
20



Optimizing Bucket Widths

• CELL format can represent a single long row as multiple rows
• The number of non-zeros in a block is set by the maximum bucket width
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An illustration of how the maximum bucket width influence the distribution of non-zero 
elements.
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A larger maximum bucket width → fewer row index accesses, but more padding
A smaller maximum bucket width → more row index accesses, but fewer padding

• Use a cost model to estimate memory access overhead for given widths
§ Larger bucket width → More overhead to access 𝐵, but less overhead to access 𝐶
§ Smaller bucket width → Less overhead to access 𝐵, but larger overhead to access 𝐶

• Use a search algorithm to find optimal widths


