
SAFusion: Efficient Tensor Fusion with Sparsification Ahead

for High-Performance Distributed DNN Training

Zhangqiang Ming1,2, Yuchong Hu1, Xinjue Zheng1,
Wenxiang Zhou1, Dan Feng1

1Huazhong University of Science and Technology, Wuhan 430074, China
2Innovation Research Institute of Cethik Group Co., Ltd, Hangzhou 311100, China

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 2

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 3

Ø Iterative algorithm to update model parameters ��;

Ø Stochastic gradient �� at �-th iteration;

Ø Learning rate �� at �-th iteration.

��,� = �ℒ��,�~� ��,�, ��,�

��,� =
1
�

�=1

�
��,� , ��,�+1 = ��,� − ��,�⋅ ��,�

(a) Traditional DNN training

�� = �ℒ��~� ��, ��

��+1 = �� − ��∙ ��

(b) Distributed DNN training

Ø Iterative algorithm to update Worker-i’s model parameters ��, �;

Ø Stochastic gradient ��,� at �-th iteration and Worker-i;

Ø Learning rate ��,� at �-th iteration and Worker-i..

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 4

Ø Huge Transmission Traffic: DNN models contain millions to billions of parameters, leading to extremely
high data transfer volumes during gradient synchronization across workers.

Ø Frequent Communication Startups: Traditional gradient synchronization incurs frequent communication
startups, resulting in significant overhead and degraded training performance.

(b) Communication bottleneck(a) Huge and frequent gradient synchronization

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 5

Ø Threshold Estimation: Select only gradient elements whose absolute value is greater than the
given threshold;

Ø Gradient Element Selection: Only the selected gradient values and its indices are transmitted for
synchronous communication, and the other elements are set to 0.

Gradient sparsification compression

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 6

⋮

Ø (a) Wait-Free Backpropagation (WFBP): WFBP performs all-reduce operation independently for
each gradient tensor, which causes a large communication startup overhead;

Ø (b) Tensor Fusion: Multiple gradient tensors are merged into a single fusion buffer, which performs
only one all-reduce operation together.

(a) WFBP

(b) Tensor Fusion

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training

Ø Tensor Fusion with Sparsification: To further improve the communication efficiency, recent state-

of-the-art focus on combining tensor fusion and sparsification compression, which first performs

tensor fusion that merges multiple gradient tensors and then performs sparsification compression.

6

Example of combing tensor fusion with sparsification compression

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 7

Ø Existing state-of-the-art tensor fusion schemes

typically compress compresses all the fused

gradient tensors in the fusion buffer, which we

call sparsification-behind tensor fusion.

Ø The challenge of sparsification-behind

tensor fusion: Gradient tensors are often

missing atop sparsification-behind tensor

fusion, which can cause degradation in

convergence performance.
Traditional sparsification-behind tensor fusion

 (density = 25%)

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 9

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 10

Ø Challenge: Tensor missing after compression will lead to a degradation of the convergence

performance, as confirmed in existing studies.

The tensor missing rate and convergence accuracy for two training tasks
with different fusion degree

11

Ø Motivation: For ResNet-152, VGG-19, and BERT-base, fusion with sparsification ahead improves

convergence accuracy by 19.4%, 26.8%, and 17.6% over sparsification behind, and achieves accuracy

close to the non-compression baseline.

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training

Comparison between sparsification-behind (traditional) tensor fusion and
sparsification-ahead tensor fusion

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 12

Sparsification-behind tensor fusion causes tensor missing

Ø Sparsification-behind tensor fusion:

Selected gradient elements tend to be

concentrated in the gradient tensors with

larger magnitudes.

Ø Sparsification-ahead tensor fusion:

Each tensor is independently sparsified

before fused, ensuring elements from

both large- and small-magnitude tensors

are retained.

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 13

Ø Insights:
• Sparsification-behind tensor fusion performs sparsification on entire fused buffer after

tensor fusion, which causes tensor missing;

• Tensor missing causes convergence performance degradation;

ØMain idea:
• Performing sparsification on each gradient before tensor fusion can avoid tensor missing

and achieve the higher convergence accuracy;

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 14

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 15

Ø Design goals: Avoiding tensor missing and

improving convergence performance.

Ø Design details:
• Step-1: Perform the threshold-based gradient

sparsification compression;

• Step-2: Merge sparsified gradients into the fixed-

size fusion buffer;

• Step-3: Pull fused gradients for synchronization.The process of SAFusion (density = 25%)

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 16

Ø Limitation #1 of SAFusion:
• Findings: 1) Fixed-size inter-worker buffer; 2) Varied-size sparsified gradients of different workers;

• Different workers have different numbers of sparsified gradients at the same fusion phase, thus

some gradients may have to wait a long time for synchronization.

 SAFusion may have long synchronization waiting The breakdown of the training time in
SAFusion with fixed buffer size

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 17

Ø Design idea:
• Align the same number of variable-size sparsified gradient tensors of the inter-worker buffers

during the same fusion phase, instead of a fixed fusion buffer size.

Example of aligned inter-worker tensor fusion

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 18

Ø Limitation #2 of SAFusion:
• Sparse tensor fusion computation time greater than communication time;

• Multiple intra-worker waiting periods within each iteration;

A general case of intra-worker communication pipeline for SAFusion

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 19

Ø Design idea:
• Dynamically adjust the number of fused tensors in the previous fusion buffer until its

communication time begins to only slightly greater than or equal to the sparse tensor fusion time

in the current fusion buffer;

Example of intra-worker tensor fusion with adaptive buffer size

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 20

Ø Generator Module
• Initialization and sparsification-ahead;

• Inter-worker gradient alignment tensor fusion;

• Intra-worker adaptive tensor fusion;

Ø Controller Module
• Control sparsified gradient pushing and pulling;

• Perform all-gather operation on the fusion buffer;

Ø Sparsification Compression Module
• Implement state-of-the-art gradient sparsification compression libraries, including DGC, Gaussiank,

Redsync, and SIDCo;

The workflow of SAFusion generator

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 21

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 22

Ø Testbeds
• Cloud GPU cluster: 16 instances with 64 NVIDIA A100 GPUs connected by a 200Gbps InfiniBand;
• Local GPU cluster: 8 nodes with 8 NVIDIA V100 GPUs connected by a 100Gbps InfiniBand;

Ø Workloads
• Image classification: ResNet-152, VGG-19, and ViT-large on Cifar-100 and ImageNet;
• Nature language processing: LSTM and GPT2-large on WikiText-2/103, BERT-base/large on SQuAD;

Ø Baseline and comparative approaches
• No-fusion Baseline, OkTopk, OMGS, Cupcake;
• SAFusion, SAFusion-Inter, and SAFusion-(Inter+Intra);

Ø Performance metric
• Training Throughput, Convergence performance;

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 23

Ø Image classification tasks:
• For ResNet-152 and VGG19 on Cifar-100, the Top-1 accuracy of SAFusion are slightly lower than

that of Baseline, but larger than other state-of-the-art tensor fusion methods.

Ø Natural language processing tasks:
• For LSTM and BERT-large, SAFusion also maintains the same convergence performance as the

non-compression Baseline.

Experiment 1: Training time and convergence accuracy of DNN training tasks

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 24

Ø Image classification tasks:
• For ResNet-152 and ViT-large on ImageNet, SAFusion’s training throughput of outperforms other

methods by 18%-104%, versus different GPU cluster sizes.

Ø Natural language processing tasks:
• For GPT2-large and BERT-large, SAFusion improves training throughput by 20%-144% versus

different GPU cluster sizes.

Experiment 2: Throughput of DNN training tasks on a cloud cluster

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 25

Ø Ablation experiment:
• With the inter-worker gradient alignment scheme (SAF-Inter), the training throughput improves by up

to 12.4%, 18.2%, 30.8%, and 16.8% over SAF (Naive) on the four training tasks.

• Compared to SAF-Inter, the intra-worker adaptive fusion scheme (SAF-Inter+Intra) improves training

throughput by up to 34.7%, 46.4%, 35.3%, and 37.7% across four tasks, respectively.

Experiment 3: Throughput of DNN training tasks

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 26

Ø Training time breakdown:
• For the two training tasks, SAFusion reduces non-overlapping communication time (NOCT) by

132%-160% compared to WFBP, and by 20%-107% compared to other tensor fusion methods.

• SAFusion’s compression time increases by only 4.5%-6.2% compared to OMGS and Cupcake.

Experiment 4: Training time breakdown for different tensor fusion schemes on
two training tasks

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 27

Ø Different sparsification methods:
• For ResNet-152 on ImageNet, compared to WFBP, OkTopk, OMGS, and Cupcake, SAFusion

achieves throughput improvements of 14%-77%;

• For BERT-large on SQuAD, SAFusion also increases the training throughput by 10.2%-90.6%.

Experiment 5: Training performance comparison using different sparsification
compression methods

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 28

Ø Different sparsification densities:
• SAFusion’s training throughput outperforms other tensor fusion schemes by 27.7%-78.6%, 26.2%-

83.1%, and 14.2%-77.2% when the density is reduced from 0.1 to 0.05 and 0.01, respectively.

Experiment 6: Training performance comparison using different
sparsification density

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 29

Ø Different network bandwidths:
• Under the three network environments, SAFusion’s training throughput outperforms other state-of-

the-art tensor fusion schemes by 12.1%-85.9%, 9.2%-75.3%, and 11.2%-77.2%, respectively.

Experiment 7: Training performance comparison using different bandwidths

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 30

Ø How to optimize tensor fusion with sparsification in high-performance
distributed DNN training systems?

Ø Contributions
• SAFusion: avoids gradient tensor missing via a sparsification-ahead tensor fusion

mechanism to improve the convergence performance;
• SAFusion-Inter: aligns the number of sparsified gradients among fusion buffers of

different workers to reduce the long inter-worker gradient synchronization waiting;
• SAFusion-Intra: dynamically adjusts the number of gradients merged in the fusion

buffer for each worker to improve the intra-worker training pipeline efficiency.

Ø Prototype
• https://github.com/YuchongHu/SAFusion

Ø Contacts
• zqming@hust.edu.cn and yuchonghu@hust.edu.cn

mailto:zqming@hust.edu.cn
mailto:yuchonghu@hust.edu.cn

Zhangqiang Ming: zqming@hust.edu.cn

mailto:zqming@hust.edu.cn

