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Background
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(a) Traditional DNN training

» lterative algorithm to update model parameters

» Stochastic gradient  at -th iteration;

» Learning rate at -th iteration.
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(b) Distributed DNN training

Forward pass

Backward pass

» lIterative algorithm to update Worker-i's model parameters

» Stochastic gradient

» Learning rate
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~at -th iteration and Worker-i..

~at -th iteration and Worker-i;



Performance Bottleneck
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(a) Huge and frequent gradient synchronization (b) Communication bottleneck

» Huge Transmission Traffic: DNN models contain millions to billions of parameters, leading to extremely
high data transfer volumes during gradient synchronization across workers.

» Frequent Communication Startups: Traditional gradient synchronization incurs frequent communication
startups, resulting in significant overhead and degraded training performance.
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Sparsification Compression Technology

Original Gradient Tensor G

Threshold = 4-th largest of |G| ‘y Threshold-Based
Sparsification Compression

. |Value| > Threshold :‘i-: e |
| | | _ 1
|

|Value| < Threshold

Values Indicates

Sparsified Gradient Tensor G

Gradient sparsification compression

» Threshold Estimation: Select only gradient elements whose absolute value is greater than the
given threshold;

» Gradient Element Selection: Only the selected gradient values and its indices are transmitted for
synchronous communication, and the other elements are set to 0.
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Tensor Fusion Technology
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» (a) Wait-Free Backpropagation (WFBP): WFBP performs all-reduce operation independently for
each gradient tensor, which causes a large communication startup overhead,;

» (b) Tensor Fusion: Multiple gradient tensors are merged into a single fusion buffer, which performs
only one all-reduce operation together.
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Combining Tensor Fusion with Sparsification
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Example of combing tensor fusion with sparsification compression

» Tensor Fusion with Sparsification: To further improve the communication efficiency, recent state-
of-the-art focus on combining tensor fusion and sparsification compression, which first performs

tensor fusion that merges multiple gradient tensors and then performs sparsification compression.
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Tensor Fusion with Sparsification Behind
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Challenge and Motivation



Observation #1 (Challenge): Tensor Missing
Leads to Low Convergence Accuracy
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(a) ResNet-152 [50] on Cifar-100 [52]
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(b) BERT-base [2] on SQuAD [53]

The tensor missing rate and convergence accuracy for two training tasks
with different fusion degree

» Challenge: Tensor missing after compression will lead to a degradation of the convergence

performance, as confirmed in existing studies.



Observation #2 (Motivation): Tensor Fusion
with Sparsification Ahead Avoids Tensor Missing
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Comparison between sparsification-behind (traditional) tensor fusion and
sparsification-ahead tensor fusion

» Motivation: For ResNet-152, VGG-19, and BERT-base, fusion with sparsification ahead improves
convergence accuracy by 19.4%, 26.8%, and 17.6% over sparsification behind, and achieves accuracy

close to the non-compression baseline.
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Analysis
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Sparsification-behind tensor fusion causes tensor missing :
are retained.
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Our Insights and Main idea
» Insights:

« Sparsification-behind tensor fusion performs sparsification on entire fused buffer after

tensor fusion, which causes tensor missing;

« Tensor missing causes convergence performance degradation;

> Main idea:

» Performing sparsification on each gradient before tensor fusion can avoid tensor missing

and achieve the higher convergence accuracy;



Design
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Design SAFusion: Tensor Fusion with
Sparsification Ahead
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Fusion Buffer; : Fusion Buffer,

- | sparsification compression;

» Step-2: Merge sparsified gradients into the fixed-

______________________________________________________________________

— size fusion buffer;
Aggregation and Averaging
The process of SAFusion (density = 25%) » Step-3: Pull fused gradients for synchronization.
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Limitation #1 of SAFusion: Inter-Worker Long
Synchronlzatlon Waltlng
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The breakdown of the training time in

SAFusion may have long synchronization waiting
SAFusion with fixed buffer size

> Limitation #1 of SAFusion:

- Findings: 1) Fixed-size inter-worker buffer; 2) Varied-size sparsified gradients of different workers;

» Different workers have different numbers of sparsified gradients at the same fusion phase, thus

some gradients may have to wait a long time for synchronization.
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Design SAFusion-Inter: Inter-Worker Gradient
Alignment Fusion
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Example of aligned inter-worker tensor fusion

» Design idea:

« Align the same number of variable-size sparsified gradient tensors of the inter-worker buffers

during the same fusion phase, instead of a fixed fusion buffer size.
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Limitation #2 of SAFusion: Multiple Intra-Worker
Waiting Periods
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A general case of intra-worker communication pipeline for SAFusion

> Limitation #2 of SAFusion:

» Sparse tensor fusion computation time greater than communication time;

« Multiple intra-worker waiting periods within each iteration;
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Design SAFusion-Intra: Intra-Worker
Adaptive Fusion

Intra-worker adaptive-size fusion buffers

A
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Example of intra-worker tensor fusion with adaptive buffer size

» Design idea:

Dynamically adjust the number of fused tensors in the previous fusion buffer until its
communication time begins to only slightly greater than or equal to the sparse tensor fusion time

in the current fusion buffer;
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Implementation

---—Backward —— Inputflow —— Push

» Generator Module e e e

Initialization and sparsification-ahead;

— Pull

_________________________________________________________________________

_ _ . Regxster Hooks Online Tlme Modeling
* Inter-worker gradlent a“gnment tensor fusion; (All Gradient Tensors) | Communication || Sparsification |
{ 4
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» Controller Module . TensorFusion ) TemsorFusion
- . . . : Inter-Worker Intra-Worker ;
« Control sparsified gradient pushing and pulling; 1; Cdicnt Aledment —'{ Adaptive Buffer Sizing |

» Sparsification Compression Module

____________________________________________________________________

Perform all-gather operation on the fusion buffer;

Gradient Synchronization and Aggregation

The workflow of SAFusion generator

Implement state-of-the-art gradient sparsification compression libraries, including DGC, Gaussiank,

Redsync, and SIDCo;
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Evaluation and Conclusion



Experiment Setup

» Testbeds
« Cloud GPU cluster: 16 instances with 64 NVIDIA A100 GPUs connected by a 200Gbps InfiniBand;

* Local GPU cluster: 8 nodes with 8 NVIDIA V100 GPUs connected by a 100Gbps InfiniBand;

» Workloads
* Image classification: ResNet-152, VGG-19, and ViT-large on Cifar-100 and ImageNet;

* Nature language processing: LSTM and GPT2-large on WikiText-2/103, BERT-base/large on SQUAD;

» Baseline and comparative approaches
» No-fusion Baseline, OkTopk, OMGS, Cupcake;

» SAFusion, SAFusion-Inter, and SAFusion-(Inter+intra);

» Performance metric
« Training Throughput, Convergence performance;
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(a) ResNet-152 on Cifar-100 (b) VGG-19 on Cifar-100 (c) LSTM on WikiText-2 (d) BERT-large on SQuAD

Experiment 1: Training time and convergence accuracy of DNN training tasks

> Image classification tasks:
* For ResNet-152 and VGG19 on Cifar-100, the Top-1 accuracy of SAFusion are slightly lower than
that of Baseline, but larger than other state-of-the-art tensor fusion methods.

» Natural language processing tasks:

« For LSTM and BERT-large, SAFusion also maintains the same convergence performance as the

non-compression Baseline.
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» Image classification tasks:
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(c) GPT2-large on WikiText-103
Experiment 2: Throughput of DNN training tasks on a cloud cluster
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(d) BERT-large on SQuAD

 For ResNet-152 and ViT-large on ImageNet, SAFusion’s training throughput of outperforms other

methods by 18%-104%, versus different GPU cluster sizes.

» Natural language processing tasks:

« For GPT2-large and BERT-large, SAFusion improves training throughput by 20%-144% versus

different GPU cluster sizes.
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» Ablation experiment:
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« With the inter-worker gradient alignment scheme (SAF-Inter), the training throughput improves by up
to 12.4%, 18.2%, 30.8%, and 16.8% over SAF (Naive) on the four training tasks.

« Compared to SAF-Inter, the intra-worker adaptive fusion scheme (SAF-Inter+Intra) improves training

throughput by up to 34.7%, 46.4%, 35.3%, and 37.7% across four tasks, respectively.
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Experiment-4: Training Time Breakdown
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Experiment 4: Training time breakdown for different tensor fusion schemes on
two training tasks

» Training time breakdown:

* For the two training tasks, SAFusion reduces non-overlapping communication time (NOCT) by

132%-160% compared to WFBP, and by 20%-107% compared to other tensor fusion methods.

« SAFusion’s compression time increases by only 4.5%-6.2% compared to OMGS and Cupcake.
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Experiment-5: Impact of Different
Sparsification Methods
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Experiment 5: Training performance comparison using different sparsification
compression methods

» Different sparsification methods:
 For ResNet-152 on ImageNet, compared to WFBP, OkTopk, OMGS, and Cupcake, SAFusion

achieves throughput improvements of 14%-77%;

« For BERT-large on SQUAD, SAFusion also increases the training throughput by 10.2%-90.6%.
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Experiment-6: Impact of Sparsification Densities
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Experiment 6: Training performance comparison using different
sparsification density

» Different sparsification densities:

« SAFusion’s training throughput outperforms other tensor fusion schemes by 27.7%-78.6%, 26.2%-
83.1%, and 14.2%-77.2% when the density is reduced from 0.1 to 0.05 and 0.01, respectively.

SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 28



Experiment-7: Impact of Network Bandwidths
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Experiment 7: Training performance comparison using different bandwidths

> Different network bandwidths:

« Under the three network environments, SAFusion’s training throughput outperforms other state-of-
the-art tensor fusion schemes by 12.1%-85.9%, 9.2%-75.3%, and 11.2%-77.2%, respectively.
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Conclusion

» How to optimize tensor fusion with sparsification in high-performance
distributed DNN training systems?

> Contributions

- SAFusion: avoids gradient tensor missing via a sparsification-ahead tensor fusion
mechanism to improve the convergence performance;

« SAFusion-Inter: aligns the number of sparsified gradients among fusion buffers of
different workers to reduce the long inter-worker gradient synchronization waiting;

 SAFusion-Intra: dynamically adjusts the number of gradients merged in the fusion
buffer for each worker to improve the intra-worker training pipeline efficiency.

» Prototype
e https:/Igithub.com/YuchongHu/SAFusion

» Contacts

 zaming@hust.edu.cn and yuchonghu@hust.edu.cn
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Thanks!

Zhanggiang Ming: zgming@hust.edu.cn
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