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Ø Iterative algorithm to update model parameters ��;

Ø Stochastic gradient �� at �-th iteration;

Ø Learning rate �� at �-th iteration.
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(a) Traditional DNN training
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(b) Distributed DNN training  

Ø Iterative algorithm to update Worker-i’s model parameters ��, �;

Ø Stochastic gradient ��,� at �-th iteration and Worker-i;

Ø Learning rate ��,� at �-th iteration and Worker-i..
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Ø Huge Transmission Traffic: DNN models contain millions to billions of parameters, leading to extremely 
high data transfer volumes during gradient synchronization across workers.

Ø Frequent Communication Startups: Traditional gradient synchronization incurs frequent communication 
startups, resulting in significant overhead and degraded training performance.

(b) Communication bottleneck(a) Huge and frequent gradient synchronization



SAFusion: Efficient Tensor Fusion with Sparsification Ahead for High-Performance Distributed DNN Training 5

Ø Threshold Estimation: Select only gradient elements whose absolute value is greater than the 
given threshold;

Ø Gradient Element Selection: Only the selected gradient values and its indices are transmitted for 
synchronous communication, and the other elements are set to 0.

Gradient sparsification compression
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⋮

Ø (a) Wait-Free Backpropagation (WFBP): WFBP performs all-reduce operation independently for 
each gradient tensor, which causes a large communication startup overhead;

Ø (b) Tensor Fusion: Multiple gradient tensors are merged into a single fusion buffer, which performs 
only one all-reduce operation together.

(a) WFBP

(b) Tensor Fusion
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Ø Tensor Fusion with Sparsification: To further improve the communication efficiency, recent state-

of-the-art focus on combining tensor fusion and sparsification compression, which first performs 

tensor fusion that merges multiple gradient tensors and then performs sparsification compression.

6

Example of combing tensor fusion with sparsification compression
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Ø Existing state-of-the-art tensor fusion schemes 

typically compress compresses all the fused 

gradient tensors in the fusion buffer, which we 

call sparsification-behind tensor fusion. 

Ø The challenge of sparsification-behind 

tensor fusion: Gradient tensors are often 

missing atop sparsification-behind tensor 

fusion, which can cause degradation in 

convergence performance.
Traditional sparsification-behind tensor fusion

 (density = 25%)
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Ø Challenge: Tensor missing after compression will lead to a degradation of the convergence 

performance, as confirmed in existing studies.

The tensor missing rate and convergence accuracy for two training tasks 
with different fusion degree
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Ø Motivation: For ResNet-152, VGG-19, and BERT-base, fusion with sparsification ahead improves 

convergence accuracy by 19.4%, 26.8%, and 17.6% over sparsification behind, and achieves accuracy 

close to the non-compression baseline.
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Comparison between sparsification-behind (traditional) tensor fusion and 
sparsification-ahead tensor fusion
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Sparsification-behind tensor fusion causes tensor missing

Ø Sparsification-behind tensor fusion: 

Selected gradient elements tend to be 

concentrated in the gradient tensors with 

larger magnitudes.

Ø Sparsification-ahead tensor fusion: 

Each tensor is independently sparsified 

before fused, ensuring elements from 

both large- and small-magnitude tensors 

are retained.
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Ø Insights:
• Sparsification-behind tensor fusion performs sparsification on entire fused buffer after 

tensor fusion, which causes tensor missing;

• Tensor missing causes convergence performance degradation;

ØMain idea:
• Performing sparsification on each gradient before tensor fusion can avoid tensor missing 

and achieve the higher convergence accuracy;
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Ø Design goals: Avoiding tensor missing and 

improving convergence performance.

Ø Design details:
• Step-1: Perform the threshold-based gradient 

sparsification compression;

• Step-2: Merge sparsified gradients into the fixed-

size fusion buffer;

• Step-3: Pull fused gradients for synchronization.The process of SAFusion (density = 25%)
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Ø Limitation #1 of SAFusion: 
• Findings: 1) Fixed-size inter-worker buffer; 2) Varied-size sparsified gradients of different workers; 

• Different workers have different numbers of sparsified gradients at the same fusion phase, thus 

some gradients may have to wait a long time for synchronization.

 SAFusion may have long synchronization waiting The breakdown of the training time in 
SAFusion with fixed buffer size
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Ø Design idea:
• Align the same number of variable-size sparsified gradient tensors of the inter-worker buffers 

during the same fusion phase, instead of a fixed fusion buffer size. 

Example of aligned inter-worker tensor fusion
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Ø  Limitation #2 of SAFusion: 
• Sparse tensor fusion computation time greater than communication time;

• Multiple intra-worker waiting periods within each iteration; 

A general case of intra-worker communication pipeline for SAFusion
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Ø Design idea:
• Dynamically adjust the number of fused tensors in the previous fusion buffer until its 

communication time begins to only slightly greater than or equal to the sparse tensor fusion time 

in the current fusion buffer;

Example of intra-worker tensor fusion with adaptive buffer size
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Ø   Generator Module
• Initialization and sparsification-ahead;

• Inter-worker gradient alignment tensor fusion;

• Intra-worker adaptive tensor fusion;

Ø  Controller Module
• Control sparsified gradient pushing and pulling;

• Perform all-gather operation on the fusion buffer;

Ø Sparsification Compression Module
• Implement state-of-the-art gradient sparsification compression libraries, including DGC, Gaussiank, 

Redsync, and SIDCo;

The workflow of SAFusion generator
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Ø  Testbeds
• Cloud GPU cluster: 16 instances with 64 NVIDIA A100 GPUs connected by a 200Gbps InfiniBand; 
• Local GPU cluster:  8 nodes with 8 NVIDIA V100 GPUs connected by a 100Gbps InfiniBand; 

Ø  Workloads
• Image classification: ResNet-152, VGG-19, and ViT-large on Cifar-100 and ImageNet;
• Nature language processing: LSTM and GPT2-large on WikiText-2/103, BERT-base/large on SQuAD;

Ø  Baseline and comparative approaches
• No-fusion Baseline, OkTopk, OMGS, Cupcake; 
• SAFusion, SAFusion-Inter, and SAFusion-(Inter+Intra); 

Ø  Performance metric
• Training Throughput, Convergence performance; 
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Ø  Image classification tasks: 
• For ResNet-152 and VGG19 on Cifar-100, the Top-1 accuracy of SAFusion are slightly lower than 

that of Baseline, but larger than other state-of-the-art tensor fusion methods.

Ø  Natural language processing tasks: 
• For LSTM and BERT-large, SAFusion also maintains the same convergence performance as the 

non-compression Baseline.

Experiment 1: Training time and convergence accuracy of DNN training tasks
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Ø  Image classification tasks: 
• For ResNet-152 and ViT-large on ImageNet, SAFusion’s training throughput of outperforms other 

methods by 18%-104%, versus different GPU cluster sizes. 

Ø  Natural language processing tasks: 
• For GPT2-large and BERT-large, SAFusion improves training throughput by 20%-144% versus 

different GPU cluster sizes.

Experiment 2: Throughput of DNN training tasks on a cloud cluster
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Ø  Ablation experiment: 
• With the inter-worker gradient alignment scheme (SAF-Inter), the training throughput improves by up 

to 12.4%, 18.2%, 30.8%, and 16.8% over SAF (Naive) on the four training tasks.

• Compared to SAF-Inter, the intra-worker adaptive fusion scheme (SAF-Inter+Intra) improves training 

throughput by up to 34.7%, 46.4%, 35.3%, and 37.7% across four tasks, respectively.

Experiment 3: Throughput of DNN training tasks
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Ø  Training time breakdown: 
• For the two training tasks, SAFusion reduces non-overlapping communication time (NOCT) by 

132%-160% compared to WFBP, and by 20%-107% compared to other tensor fusion methods.

• SAFusion’s compression time increases by only 4.5%-6.2% compared to OMGS and Cupcake.

Experiment 4: Training time breakdown for different tensor fusion schemes on 
two training tasks
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Ø  Different sparsification methods: 
• For ResNet-152 on ImageNet, compared to WFBP, OkTopk, OMGS, and Cupcake, SAFusion 

achieves throughput improvements of 14%-77%;

• For BERT-large on SQuAD, SAFusion also increases the training throughput by 10.2%-90.6%.

Experiment 5: Training performance comparison using different sparsification 
compression methods
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Ø  Different sparsification densities: 
• SAFusion’s training throughput outperforms other tensor fusion schemes by 27.7%-78.6%, 26.2%-

83.1%, and 14.2%-77.2% when the density is reduced from 0.1 to 0.05 and 0.01, respectively.

Experiment 6: Training performance comparison using different 
sparsification density
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Ø  Different network bandwidths: 
• Under the three network environments, SAFusion’s training throughput outperforms other state-of-

the-art tensor fusion schemes by 12.1%-85.9%, 9.2%-75.3%, and 11.2%-77.2%, respectively.

Experiment 7: Training performance comparison using different bandwidths
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Ø How to optimize tensor fusion with sparsification in high-performance 
distributed DNN training systems?

Ø  Contributions
• SAFusion: avoids gradient tensor missing via a sparsification-ahead tensor fusion 

mechanism to improve the convergence performance; 
• SAFusion-Inter: aligns the number of sparsified gradients among fusion buffers of 

different workers to reduce the long inter-worker gradient synchronization waiting;
• SAFusion-Intra: dynamically adjusts the number of gradients merged in the fusion 

buffer for each worker to improve the intra-worker training pipeline efficiency.

Ø Prototype
• https://github.com/YuchongHu/SAFusion

Ø Contacts
• zqming@hust.edu.cn and yuchonghu@hust.edu.cn
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