
FloatGuard: Efficient Whole-Program
Detection of Floating-Point
Exceptions in AMD GPUs

Dolores Miao (UC Davis)
Ignacio Laguna (LLNL)
Cindy Rubio-González (UC Davis)

HPDC 2025
Notre Dame, IN, USA, 07.21.2025

1

AMD GPUs Gaining Traction in HPC

● Supercomputers like El Capitan and Frontier use AMD GPUs
● AMD GPU computing toolchain is maturing: ROCm

○ HIP kernel language with Clang compiler
○ Debugging tools such as ROCgdb

● Arising need in debugging numerical code, incl. FP
Exceptions

2

Automated FP Exception Detection

1. Dinda et al. 2020. Spying on the Floating Point
Behavior of Existing, Unmodified Scientific
Applications. In HPDC. ACM, 5–16.
2. Laguna et al. 2022. FPChecker: Floating-Point
Exception Detection Tool and Benchmark for
Parallel and Distributed HPC. In IISWC. IEEE, 39–50.
3. Li et al. 2023. Design and Evaluation of GPU-FPX:
A Low-Overhead tool for Floating-Point Exception
Detection in NVIDIA GPUs. In HPDC. ACM, 59–71.

3

Platform
FP Exception

Hardware

Tools /

Approach
Mechanism & Notes

CPUs (x86-64) registers and traps FPSpy [1]
Uses FP control/status register and signal-based trap-

and-emulate to detect exceptions in unmodified binaries.

NVIDIA GPUs

(CUDA)
No hardware

FPChecker [2],

GPU-FPX [3]

Compiler or binary instrumentation; high overhead; no

native FP exception trapping.

AMD GPUs registers and traps ???
(How can we leverage AMD’s exception registers to

natively track exceptions in GPU kernels?)

Floating-Point Exceptions on AMD GPUs

Exception Type Abbr. Trap Mode Descriptions

invalid operation NAN 0 12 NaN as result, i.e. 0/0

input denormal IN_SUB 1 13 Subnormal number in operand

divide by zero DIV0 2 14 Division by zero, i.e. 10.0/0.0

overflow INF 3 15 Result outside of range expressed by FP type

underflow OUT_SUB 4 16 Subnormal number in result

inexact 5 5 17 Result not precisely represented, rounding is involved

int. divide by zero INT_DIV0 6 18 Integer division by zero, i.e. 10/0

Exception types
not in IEEE 754

4

Floating-Point Exception Registers on AMD GPUs

● Mode register
○ Individually enable/disable types of exceptions
○ Reset at the beginning of every GPU kernel

● Trap status register
○ Accumulate exception state after they are encountered
○ Can be cleared at any point

5

Challenges using FP Exception Registers

Naïve thought: use ROCgdb manually to track exceptions
1. Exception trapping is off by default in kernels
● Need to manually enable in each kernel thread

2. Program counter after a trap may be delayed
3. Program state unrecoverable with trapped exception
● Difficult to track exception after the first

Conclusion: debugging manually is too time-consuming
and thus calls for an automated approach

A sample program with
exceptions in 2 kernels

6

__global__ void
kernel_fp(int *gm, float a, float b) {

int fret = (float)a / (float)b;
*gm = fret;

}

__global__ void
kernel_mixed(int *gm, int a, int b) {

int fret = a / b;
fret = fret + (float)a / (float)b;
*gm = fret;

}

FloatGuard: first tool to detect floating-point
exceptions on AMD GPUs

7

main.c

kernel_1.c

kernel_2.c

...
FloatGuard

x1th inst.: kernel_1.c:y1

x2th inst.: kernel_1.c:y2

x3th inst.: kernel_2.c:y3

...
main 0.1 0.2

FloatGuard Workflow

8

Python-driven Code Instrumentation

● Compile source files to assembly (*.s) instead of
objects (*.o)

● Inject instrumentation code into assembly
● Link to generate executables with code

instrumentation

Our method has several advantages

● Inject code after all optimization passes in both
frontend and backend are finished

● Compiler agnostic
● Only requires changing compiler in build scripts

9

Python-driven Code Instrumentation – Assembly Injection

● At the beginning of kernels, enable exceptions
● Around code locations with previously reported exception

○ Disable before entering, enable after exiting

enable exception; set to 0x2F0 to disable exception
s_mov_b32 s31, 0x5F2F0
s_setreg_b32 hwreg(HW_REG_MODE), s31
clear trap status flags to report exception types correctly
s_setreg_imm32_b32 hwreg(HW_REG_TRAPSTS, 0, 7), 0

10

Testing Framework

● Run program until exception occur,
record location

● Rerun assembly code instrumentation
with updated info

● Link and run program again
● Rinse and repeat until no further

exception is triggered

11

Evaluation Setup

● 56 benchmark programs
● Detecting exceptions in real scientific codes
● Rodinia, PolyBench-ACC, Parboil, SHOC, GPGPU-Sim,

HPCG
● Compiled with default flags and run on provided inputs

● 500 synthetic GPU programs generated by Varity [1]
● Cases with existing compiler-induced inconsistencies
● Compiled with –O3

● Test Machine: Ryzen 5 7500F + 32GiB RAM + RX 6650 XT
● Also tested on CDNA2/RDNA3/etc. architectures

● ROCm 6.1.2 + Clang 17.0.0

12

1. Ignacio Laguna. 2020. Varity: Quantifying
Floating-Point Variations in HPC
Systems Through Randomized Testing. In IPDPS.
IEEE, 622–633.

Exceptions in 9/56 benchmarks with all provided inputs

RQ1: Exception Detection Effectiveness

13

Benchmark Set Benchmark Total Exceptions NAN IN_SUB DIV0 INF OUT_SUB

Rodinia cfd 12 6 0 6 0 0

Rodinia myocyte 50 26 3 0 15 9

PolyBench-ACC correlation 1 0 0 1 0 0

PolyBench-ACC gramschmidt 2 1 0 1 0 0

PolyBench-ACC lu 1 1 0 0 0 0

PolyBench-ACC adi 4 4 0 0 0 0

SHOC s3d 823 6 681 0 7 264

Parboil stencil 2 0 1 0 0 1

GPGPU-Sim wp 68 2 50 0 5 18

Exceptions found in 498/500 synthetic programs

● The remaining 2 GPU programs have exceptions not reported under –O3
○ One precalculates all exception-occurring operations in compile time
○ The other has exception-occurring dead code that is removed in compile time

RQ1: Exception Detection Effectiveness

14

for (int i = 0; i < var_1; ++i) {
comp = var_2 * 1.5271E-42f * (var_3 / floorf(

-1.5532E35f - 1.8528E35f - var_4 * -1.4807E36f));
comp = var_5 + 1.1129E35f + var_6 / powf(expf(1.4350E-36f),

var_7 / -1.7503E11f * var_8 / 1.5272E-19f);
}

What about slowdown?

● Slowdown ratios approx. linearly related
to the number of exceptions

● Sublinearly when running time is longer
● s3d has higher slowdown ratio due to

longer linker time

RQ1: Exception Detection Effectiveness

15

● Tested flags: -ffast-math -fdenormal-fp-math=preserve-sign
● Overall, fewer exceptions in general

○ Total exceptions in 56 benchmark programs dropped by 37.3%
○ Total exceptions in 500 synthetic programs dropped by 47%

⚫ But there are cases with different or more exceptions, for example case_387 where
var_2 is subnormal:

if(comp == cosf(var_1 - 1.8906E35f - (1.1216E14f / var_2)))

⚫ If you use these flags in production, test your program with/without these
optimizations, and take note of exceptions

RQ2: Exceptions & Floating-Point Optimization Flags

16

Why test across platforms?

● Floating-point behavior varies with compilation and execution,
especially across platforms

● Many GPU programs are written for CUDA and ported to HIP,
leading to potential differences

● Studying exception handling between CUDA and HIP reveals
platform-specific compliance and optimizations

● Aids debugging and ensures code portability
● Use FloatGuard on HIP; GPU-FPX [1] on CUDA

RQ3: HIP and CUDA exception behavior comparison

1. Li et al. 2023. Design and Evaluation of GPU-FPX:
A Low-Overhead tool for Floating-Point Exception
Detection in NVIDIA GPUs. In HPDC. ACM, 59–71.

17

Example synthetic programs that show differences in behavior

● case_450: division too small, results in zero; FloatGuard reports as an
exception because it still has underflow

if (comp < (-1.2964E-35f/var_2))

● case_350: comp variable was subnormal, seen as selection instruction result,
triggers exception on GPU-FPX, but not on FloatGuard

if (comp <= (-0.0f - var_1 - 1.9945E-44f/-1.8945E36f)) {comp = …}

RQ3: HIP and CUDA exception behavior comparison

18

4 benchmark programs show different
numerical behaviors

● For example, GPGPU-Sim/rayTracing:
exceptions in CUDA due to different
__saturatef() implementations, minor color
difference in output

● Or HPCG where exceptions in CUDA only,
due to underlying cuBLAS/hipBLAS library
behaviors

RQ3: HIP and CUDA exception behavior comparison

19

● The first tool to detect all floating-point exceptions in AMD HIP
programs, utlizing registers and code instrumentation

● Implemented as FloatGuard, requires minimal build system change,
and detects exceptions with linear slowdown relative to exception
count

● Same GPU program shows varying numerical behaviors over FP
optimizations, or between HIP and CUDA builds

FloatGuard Contributions

20

Thank you!
Correspondence: Dolores Miao (wjmiao@ucdavis.edu / captainmieu@gmail.com)
Code repository: https://github.com/LLNL/FloatGuard

QR code for CV
I am currently seeking postdoc/
academic/industry research
opportunities—feel free to connect!

21

mailto:wjmiao@ucdavis.edu
mailto:captainmieu@gmail.com
https://github.com/LLNL/FloatGuard

	Slide 1: FloatGuard: Efficient Whole-Program Detection of Floating-Point Exceptions in AMD GPUs
	Slide 2: AMD GPUs Gaining Traction in HPC
	Slide 3: Automated FP Exception Detection
	Slide 4: Floating-Point Exceptions on AMD GPUs
	Slide 5: Floating-Point Exception Registers on AMD GPUs
	Slide 6: Challenges using FP Exception Registers
	Slide 7: FloatGuard: first tool to detect floating-point exceptions on AMD GPUs
	Slide 8: FloatGuard Workflow
	Slide 9: Python-driven Code Instrumentation
	Slide 10: Python-driven Code Instrumentation – Assembly Injection
	Slide 11: Testing Framework
	Slide 12: Evaluation Setup
	Slide 13: RQ1: Exception Detection Effectiveness
	Slide 14: RQ1: Exception Detection Effectiveness
	Slide 15: RQ1: Exception Detection Effectiveness
	Slide 16: RQ2: Exceptions & Floating-Point Optimization Flags
	Slide 17: RQ3: HIP and CUDA exception behavior comparison
	Slide 18: RQ3: HIP and CUDA exception behavior comparison
	Slide 19: RQ3: HIP and CUDA exception behavior comparison
	Slide 20: FloatGuard Contributions
	Slide 21: Thank you!

