FloatGuard: Efficient Whole-Program
Detection of Floating-Point
Exceptions in AMD GPUs

Dolores Miao (UC Davis)
Ignacio Laguna (LLNL)
Cindy Rubio-Gonzalez (UC Davis)

HPDC 2025
Notre Dame, IN, USA, 07.21.2025

AMD GPUs Gaining Traction in HPC

ELCAPITAN
® Supercomputers like El Capitan and Frontier use AMD GPUs T
® AMD GPU computing toolchain is maturing: ROCm
O HIP kernel language with Clang compiler AM D:l

O Debugging tools such as ROCgdb
® Arising need in debugging numerical code, incl. FP RO c I | I

Exceptions

Automated FP Exception Detection

Platform

FP Exception

Tools /

1. Dinda et al. 2020. Spying on the Floating Point
Behavior of Existing, Unmodified Scientific
Applications. In HPDC. ACM, 5-16.

2. Laguna et al. 2022. FPChecker: Floating-Point
Exception Detection Tool and Benchmark for
Parallel and Distributed HPC. In [ISWC. IEEE, 39-50.
3. Li et al. 2023. Design and Evaluation of GPU-FPX:
A Low-Overhead tool for Floating-Point Exception
Detection in NVIDIA GPUs. In HPDC. ACM, 59-71.

Mechanism & Notes

Hardware

Approach

Uses FP control/status register and signal-based trap-

SAUAPEIEL) KMragisters and fraps | FPSpy [1] and-emulate to detect exceptions in unmodified binaries.
NVIDIA GPUs Sl —— FPChecker [2], | Compiler or binary instrumentation; high overhead; no
(CUDA) GPU-FPX [3] native FP exception trapping.

AMD GPUs [registers and traps | 222 (How can we leverage AMD’s exception registers to

natively track exceptions in GPU kernels?)

Floating-Point Exceptions on AMD GPUs

Exception types Exception Type Trap| Mode| Descriptions
not in IEEE 754 invalid operation NAN 12 | NaN as result, i.e. 0/0
input denormal IN_SUB 1 13 Subnormal number in operand
divide by zero DIVO 2 14 | Division by zero, i.e. 10.0/0.0
overflow INF 3 15 | Result outside of range expressed by FP type
underflow OUT_SuB| 4 16 | Subnormal number in result

inexact 5 17 | Result not precisely represented, rounding is involved

5
int. divide by zero INT_DIVO 6 18 Integer division by zero, i.e. 10/0

Floating-Point Exception Registers on AMD GPUs

® Mode register
O Individually enable/disable types of exceptions
O Reset at the beginning of every GPU kernel
® Trap status register
O Accumulate exception state after they are encountered
O Can be cleared at any point

Challenges using FP Exception Registers

Naive thought: use ROCgdb manually to track exceptions
1. Exception trapping is off by default in kernels

® Need to manually enable in each kernel thread
2. Program counter after a trap may be delayed

3. Program state unrecoverable with trapped exception
® Difficult to track exception after the first

Conclusion: debugging manually is too time-consuming
and thus calls for an automated approach

__global__ void

kernel fp(int *gm, float a, float b) {
int fret = (float)a / (float)b;
*gm = fret;

}

__global__ void

int fret = a / b;
fret = fret + (float)a / (float)b;
gm = ftret;

A sample program with
exceptions in 2 kernels

FloatGuard: first tool to detect floating-point

exceptions on AMD GPUs
main.c
kernel_1.c
kernel_2.c FloatGuard

main 0.1 0.2

x1th inst.: kernel_1.c:y1
x2th inst.: kernel_1.c:y2
x3th inst.: kernel_2.c:y3

FloatGuard Workflow

Exception Location List

yd

xth instruction: kernel_1.c:x

Tnstrumented code : - A

main.c main.c — ' (uggaste) yth instruction: kernel_1.c:y
kernel_T.cu | _|Compiler Wrapper| | kernel_1.s amplier yerapper i outl—»] . Testing ¢

kernel_2.cu (Assembler) —>| kernel_2.s (Codtle_.lnlj(ec;uon& main.out —>| Framework
inker

xth instruction: kernel_1.c:x

L . o Involes debugger (ROCgdb) 0 yth instruction: kernel_1.c:y

Python-driven Intrumentation — Il (terminate) | zth instruction: kernel_1.c:z

Final Exception Location List

Python-driven Code Instrumentation

® Compile source files to assembly (*.s) instead of
objects (*.0)
® Inject instrumentation code into assembly

- - Instrumented code
® Link to generate executables with code kemel1.cu ||, [compier wrapper] | |kemel.1.s | | compier vrapoedf [
i H kernel_2.cu (Assembler) [T kernel_2.s (Code Injection & > main.out —
Instrumentation Linker)

[I—

Inve
Python-drivef§ Intrumentation — A

Our method has several advantages

® |Inject code after all optimization passes in both
frontend and backend are finished

® Compiler agnostic

® Only requires changing compiler in build scripts

Python-driven Code Instrumentation - Assembly Injection

e At the beginning of kernels, enable exceptions
e Around code locations with previously reported exception
o Disable before entering, enable after exiting

enable exception; set to Ox2F0 to disable exception

s _mov_b32 s31, Ox5F2F0

s_setreg b32 hwreg(HW REG MODE), s31

clear trap status flags to report exception types correctly
s_setreg imm32 b32 hwreg(HW_REG_TRAPSTS, @, 7), ©

10

Testing Framework

® Run program until exception occur,
record location

® Rerun assembly code instrumentation
with updated info

e Link and run program again

® Rinse and repeat until no further
exception is triggered

Exception Location List

Compiler Wrapper|
(Code Injection &
Linker)

Instrurpented

miin.ou

Testing
Framework

Involves debugger (ROCgdb)

xth instruction: kernel_1.c:x
yth instruction: kernel_1.c:y

xth instruction: kernel_1.c:x
yth instruction: kernel_1.c:y
zth instruction: kernel_1.c:z

Final Exception Location List

11

Evaluation Setup

® 56 benchmark programs
® Detecting exceptions in real scientific codes
® Rodinia, PolyBench-ACC, Parboil, SHOC, GPGPU-Sim,
HPCG
® Compiled with default flags and run on provided inputs
® 500 synthetic GPU programs generated by Varity [1]
® (Cases with existing compiler-induced inconsistencies
® Compiled with -O3
® Test Machine: Ryzen 5 7500F + 32GiB RAM + RX 6650 XT
® Also tested on CDNA2/RDNAS/etc. architectures
® ROCmé6.1.2+Clang 17.0.0

1. Ignacio Laguna. 2020. Varity: Quantifying
Floating-Point Variations in HPC

Systems Through Randomized Testing. In IPDPS.
IEEE, 622-633.

12

RQ1: Exception Detection Effectiveness

Exceptions in 9/56 benchmarks with all provided inputs

Benchmark Set Benchmark Total Exceptions NAN IN_SUB DIVO INF OUT_SUB
Rodinia cfd 12 6 0 6 0 0

Rodinia myocyte 50 26 3 0 15 9
PolyBench-ACC correlation 1 0 0 1 0 0
PolyBench-ACC gramschmidt 2 1 0 1 0 0
PolyBench-ACC lu 1 1 0 0 0 0
PolyBench-ACC adi 4 4 0 0 0 0

SHOC s3d 823 6 681 0 7 264
Parboil stencil 2 0 1 0 0 1
GPGPU-Sim wp 68 2 50 0 5 18

13

RQ1: Exception Detection Effectiveness

Exceptions found in 498/500 synthetic programs

® Theremaining 2 GPU programs have exceptions not reported under -O3
O One precalculates all exception-occurring operations in compile time
O The other has exception-occurring dead code that is removed in compile time

for (int i = 0; i < var_1; ++i) {

comp = var_2 * 1.5271E-42f * (var_3 / floorf(
-1.5532E35f - 1.8528E35f - var 4 * -1,4807E36f));
var_5 + 1.1129E35f + var_6 / powf(expf(1.4350E-36f),
var_7 / -1.7503E11f * var_8 / 1.5272E-19f);

comp

14

RQ1: Exception Detection Effectiveness

What about slowdown?

Slowdown ratios approx. linearly related
to the number of exceptions

Sublinearly when running time is longer
s3d has higher slowdown ratio due to
longer linker time

Slowdown Ratio

2504

2004

@
=]

e Benchmark Programs
—— Regression line: y = 3.58x + 2.51

0 0 20 3 40 50
Number of Floating-point Exceptions

60

70

15

RQ2: Exceptions & Floating-Point Optimization Flags

Tested flags: -ffast-math -fdenormal-fp-math=preserve-sign
® Overall, fewer exceptions in general

O Total exceptions in 56 benchmark programs dropped by 37.3%
O Total exceptions in 500 synthetic programs dropped by 47%

® But there are cases with different or more exceptions, for example case_387 where
var_2 is subnormal:

if(comp == cosf(var_ 1 - 1.8906E35f - (1.1216E14f / var_2)))

® [f you use these flags in production, test your program with/without these
optimizations, and take note of exceptions

16

RQ3: HIP and CUDA exception behavior comparison

Why test across platforms?

Floating-point behavior varies with compilation and execution,

especially across platforms

Many GPU programs are written for CUDA and ported to HIP,

leading to potential differences

Studying exception handling between CUDA and HIP reveals

platform-specific compliance and optimizations

Aids debugging and ensures code portability A Low-Overhead tool forFloting-Point Exception
Use FloatGuard on HIP; GPU-FPX [1] on CUDA |

1. Li et al. 2023. Design and Evaluation of GPU-FPX:

17

RQ3: HIP and CUDA exception behavior comparison

Example synthetic programs that show differences in behavior

® case_450: division too small, results in zero; FloatGuard reports as an
exception because it still has underflow

if (comp < (-1.2964E-35f/var_2))

® case_350: comp variable was subnormal, seen as selection instruction result,
triggers exception on GPU-FPX, but not on FloatGuard

if (comp <= (-0.0f - var_1 - 1.9945E-44f/-1.8945E36F)) {comp = ..}

18

RQ3: HIP and CUDA exception behavior comparison

4 benchmark programs show different
numerical behaviors

e For example, GPGPU-Sim/rayTracing:
exceptions in CUDA due to different
__saturatef() implementations, minor color

difference in output

® Or HPCG where exceptions in CUDA only,
due to underlying cuBLAS/hipBLAS library
behaviors

19

FloatGuard Contributions

The first tool to detect all floating-point exceptions in AMD HIP
programs, utlizing registers and code instrumentation

Implemented as FloatGuard, requires minimal build system change,
and detects exceptions with linear slowdown relative to exception
count

Same GPU program shows varying numerical behaviors over FP
optimizations, or between HIP and CUDA builds

20

Thank you!

Correspondence: Dolores Miao (wjmiao@ucdavis.edu / captainmieu@gmail.com)
Code repository: https://github.com/LLNL/FloatGuard

QR code for CV

| am currently seeking postdoc/
academic/industry research
opportunities—feel free to connect!

mailto:wjmiao@ucdavis.edu
mailto:captainmieu@gmail.com
https://github.com/LLNL/FloatGuard

	Slide 1: FloatGuard: Efficient Whole-Program Detection of Floating-Point Exceptions in AMD GPUs
	Slide 2: AMD GPUs Gaining Traction in HPC
	Slide 3: Automated FP Exception Detection
	Slide 4: Floating-Point Exceptions on AMD GPUs
	Slide 5: Floating-Point Exception Registers on AMD GPUs
	Slide 6: Challenges using FP Exception Registers
	Slide 7: FloatGuard: first tool to detect floating-point exceptions on AMD GPUs
	Slide 8: FloatGuard Workflow
	Slide 9: Python-driven Code Instrumentation
	Slide 10: Python-driven Code Instrumentation – Assembly Injection
	Slide 11: Testing Framework
	Slide 12: Evaluation Setup
	Slide 13: RQ1: Exception Detection Effectiveness
	Slide 14: RQ1: Exception Detection Effectiveness
	Slide 15: RQ1: Exception Detection Effectiveness
	Slide 16: RQ2: Exceptions & Floating-Point Optimization Flags
	Slide 17: RQ3: HIP and CUDA exception behavior comparison
	Slide 18: RQ3: HIP and CUDA exception behavior comparison
	Slide 19: RQ3: HIP and CUDA exception behavior comparison
	Slide 20: FloatGuard Contributions
	Slide 21: Thank you!

