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Petabyte-Scale Storage and I/O Needs

Introduction: High-Volume Data in Scientific Computing

➢ Large-scale scientific applications generate 

extremely large amounts of data 

➢ Limited storage capacity (even for large-

scale parallel computers) 

➢ The I/O bandwidth can create bottlenecks 

in the transmission

A Typical Scientific Simulation? 

Nyx Cosmological Simulation

- Adaptive mesh, hydrodynamics code designed to 
model astrophysical reacting flows

- Simulate the universe and compare with our 
observable universe

Dark matter density of a Nyx 
cosmological simulation data 
↑ 
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Petabyte-Scale Storage and I/O Needs

Introduction: High-Volume Data in Scientific Computing
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Application

Nyx
Cosmology simulation

Data scale Passive solution

2.8 TB
per snapshot

To reduce

34 GB/S
on Hopper@NERSC

10x-100x
In need

CESM
Climate simulation

20% VS 50%
of h/w budget for storage

2013 vs 2017

5h30m to store

NSF Blue Waters, I/O at 1TBps

10x
In need

HACC
Cosmology simulation

20PB
per one-trillian particle

simulation

use up FS
26 PB for Mira@ANL

10x
In need
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Introduction: Optimization with Error-Bounded Lossy Compression

What is lossy compression

➢ Reduce data size by approximating values 

while allowing controlled errors

➢ Maintains data quality within error bounds 

for scientific analysis

Why lossy compression

➢ Significantly higher compression ratio

➢ Introduced error can by controlled

➢ ensuring that the impact on simulation 

results remains minimal and within a 

predefined error bound



Introduction Background Design Evaluation Backmatter

5

Introduction: Existing lossy compressors

Using intra-field information to compress

➢ predict current value from neighbors, 

encode residuals

➢ Supports multiple predictors (e.g., 

Lorenzo, Interpolation)

➢ Effective when local correlation is 

strong

One of the most widely used prediction-based lossy compressor

Lorenzo predictor used in SZ ↑ 
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Missing information

➢ Existing compressors (e.g., SZ, ZFP) 

primarily exploit intra-field information

within a single data field

➢ They overlook a key characteristic: 

Scientific data often consists of 

multiple, physically inter-correlated 

fields

Introduction: Cross-Field Correlation

6

4 fields in CESM-ATM dataset ↑ 
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Learning-based Cross-field Prediction

➢ Cross-Field Framework: Propose the first framework to leverage cross-field 

correlations 

➢ Automated Anchor Selection: Design an intelligent algorithm to select optimal 

predictors and resolve dependencies

➢ Hybrid Prediction Engine: A flexible engine that can either enhance existing 

compressors (like SZ3) or fully reconstruct fields for extreme compression ratios

➢ Detailed Evaluation: Achieve up to 19.3% overall and 103.4% single-field 

compression ratio improvements on real-world datasets

Our solution & Contributions
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➢ What is Boosting? An ensemble learning technique that combines multiple simple models 

("weak learners") to create a single, powerful model

➢ How does it work? It works through iterative error correction: each new model in the 

sequence is trained to fix the prediction errors made by the previous ones

➢ Relevance to Data Compression: While originally for classification, this principle can be 

adapted for prediction. One could use a secondary predictor (like an NN) to learn and correct 

the residual errors from a primary predictor (like traditional predictor)

➢ Key Advantage: This two-stage approach is promising because predicting  residual is often a 

simpler and more efficient task for a model than predicting the original, complex data values

Background: Boosting Learning
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An overview of our offline preparation and runtime compression pipeline.

Design: A Two-Stage Framework
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Enhancing existing compressors by predicting the error with cross-field info

➢ Goal: Improve the 

compression ratio of 

compressors like SZ3 while 

respecting strict error bounds

➢ Method: uses ANCHOR FIELDS 

to predict the residual error of 

the local predictor (e.g., 

interpolation)

Design: Mode 1 - Error-Bounded Hybrid Compression

How we enhance the interpolation prediction
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Design: Mode 2 - Fully Cross-field Prediction

Achieving extreme compression by reconstructing fields entirely from anchors.

➢ Goal: highest possible compression ratio under scenarios where strict error 

bounds are not essential (e.g., visualization)

➢ Method: Reconstructs the target field entirely from its anchor fields

➢ Two-Stage NN: It uses two networks: an initial predictor generates a first 

estimate, and a second U-Net-like model corrects the residual error

➢ Result: Theoretically infinite compression ratio, limited only by model size
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Finding the most informative predictors without expert knowledge.

➢ Challenge

➢ Exhaustive anchor search is too costly

➢ Manual selection needs domain knowledge

➢ Our Solution: A Dual-Sorting Process.

➢ Stage 1 (Pre-sort): Pearson correlation-based sorting

➢ Stage 2 (Refine): Use a lightweight NN to evaluate the 

top-K candidates, selecting those that cause the largest 

drop in Mean Squared Error (MSE)

Design: Automated Anchor Field Selection

Red line highlights the significant drops
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Design: Resolving Circular Dependencies

➢ Problem: Anchor selection creates a directed graph that may contain cycles (e.g., A predicts 

B, B predicts A), causing deadlocks

➢ Step 1 (Detect Cycles): We use Tarjan's algorithm to efficiently find all Strongly Connected 

Components (SCCs), which are guaranteed to contain any and all cycles in the graph

➢ Step 2 (Break Cycles): Within each SCC, a greedy algorithm prunes the least important edges 

to break the cycles, transforming the graph into a Directed Acyclic Graph (DAG)

➢ Result: A valid, topological order for compression

13

Creating a valid compression order from the dependency graph.
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Design: Resolving Circular Dependencies
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A sub compression graph of CESM-ATM
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Design: Our Neural Network Models

Network structure

➢ For Error-Bounded Mode:

➢ A lightweight CNN with several residual blocks

➢ Kernel size is set to 5 to align with the SZ3 cubic interpolation predictor

➢ For Fully Cross-Field Mode:

➢ A two-stage design inspired by boosting learning

➢ Initial Predictor: A CNN-based model for the first estimate

➢ Residual Model: A U-Net-like architecture to capture global context and correct the initial 

prediction's error

15
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Evaluation: Experiment Setup

➢ Baseline: We compare against SZ3 with 

its interpolation predictor, a state-of-

the-art, widely-used lossy compressor

➢ Metrics: Performance is measured by:

➢ Compression Ratio (CR) 

➢ Data Quality (PSNR) 

➢ Hardware

➢ 2x Intel Xeon E5-2620v4 with 4xV100

Datasets used
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Evaluation: Model Training & Convergence

Verifying that the neural network models learn effectively.

➢ Model 1: Predicts 

residual error in the 

error-bounded mode

➢ Models 2 & 3: Work as a 

two-stage predictor 

(initial prediction + 

residual correction) in 

the fully cross-field 

mode
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Evaluation: Improved Error Distribution at Similar Compression Ratio

➢ Enhanced prediction reduces the error 

value range

➢ Error distribution becomes more 

concentrated, aiding entropy encoding

Our method concentrates the prediction error closer to zero.

The distribution of prediction error of FSNT field in CESM-ATM
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Evaluation: Detailed Result Using Mode 1

Improvement on single field
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Evaluation: Rate-Distortion Comparison Under Mode 1
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Rate-Distortion comparison of 6 fields selected from CESM-ATM
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Evaluation: Enhanced Visual Quality

Preserving fine-grained details and reducing compression artifacts.

21
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Evaluation: Enhanced Visual Quality

Preserving fine-grained details and reducing compression artifacts.
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Evaluation: Overall Performance on Full Datasets
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➢ Propose a novel framework that leverages 

overlooked cross-field correlations to 

enhance compression

➢ Design a fully automated anchor selection 

method to make the framework practical 

and robust

➢ Extend and validate the framework across a 

broader range of scientific applications and 

datasets

➢ Provide up to 19.3% overall compression 

ratio improvement and superior visual 

quality

Conclusion

24

Future work

➢ Explore more architectures to further 

improve both compression ratio and 

throughput

➢ Extend the framework across a 

broader range of scientific applications 

and datasets
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Thank you!
Any questions are welcome!

Contact: Youyuan Liu youyuan.liu@temple.edu
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