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Introduction: High-Volume Data in Scientific Computing
Petabyte-Scale Storage and 1/O Needs

> Large-scale scientific applications generate A Typical Scientific Simulation?
extremely large amounts of data Nyx Cosmological Simulation
. : - Adaptive mesh, hydrodynamics code desighed to
> Limited storage capacity (even for large- model astrophysical reacting flows
scale parallel computers) - Simulate the universe and compare with our

observable unlve_rse Sl S

> The |/O bandwidth can create bottlenecks

in the transmission

Dark matter density of a Nyx
cosmological simulation data

™
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Introduction: High-Volume Data in Scientific Computing
Petabyte-Scale Storage and 1/O Needs

Application Data scale To reduce
NyXx 2.8TB 10x-100x
Cosmology simulation per snapshot In need
CESM 20% vs 50% 10x

Climate simulation of h/w budget for storage In heed

2013 vs 2017

HACC 20PB 10x

Cosmology simulation per one-trillian particle In need
simulation
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Introduction: Optimization with Error-Bounded Lossy Compression

What is lossy compression Why lossy compression

> Reduce data size by approximating values > Significantly higher compression ratio

while allowing controlled errors
> Introduced error can by controlled

> Maintains data quality within error bounds . . . .
> ensuring that the impact on simulation

for scientific analysis . . e
results remains minimal and within a

predefined error bound
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Introduction: Existing lossy compressors

2D Lorenzo Predictor

Using intra-field information to compress =Ly= 1) Oy

SZ

(x-Ly) @ (x, )

: : 3D Lorenzo Predictor
> predict current value from neighbors,

encode residuals

> Supports multiple predictors (e.g., o :1)
x—1lyz-1)

Lorenzo, Interpolation) 169 O

> Effective when local correlation is
strong

Lorenzo predictor used in SZ T
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Introduction: Cross-Field Correlation

Missing information

> Existing compressors (e.g., SZ, ZFP)
primarily exploit intra-field information

within a single data field

> They overlook a key characteristic:
Scientific data often consists of
multiple, physically inter-correlated

fields

(c) PCONVT (d) FSDS

4 fields in CESM-ATM dataset
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Our solution & Contributions

Learning-based Cross-field Prediction

> Cross-Field Framework: Propose the first framework to leverage cross-field
correlations

> Automated Anchor Selection: Design an intelligent algorithm to select optimal
predictors and resolve dependencies

> Hybrid Prediction Engine: A flexible engine that can either enhance existing
compressors (like SZ3) or fully reconstruct fields for extreme compression ratios

> Detailed Evaluation: Achieve up to 19.3% overall and 103.4% single-field
compression ratio improvements on real-world datasets
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Background: Boosting Learning

> What is Boosting? An ensemble learning technique that combines multiple simple models

("weak learners") to create a single, powerful model

> How does it work? It works through iterative error correction: each new model in the
sequence is trained to fix the prediction errors made by the previous ones

> Relevance to Data Compression: While originally for classification, this principle can be
adapted for prediction. One could use a secondary predictor (like an NN) to learn and correct
the residual errors from a primary predictor (like traditional predictor)

> Key Advantage: This two-stage approach is promising because predicting residual is often a
simpler and more efficient task for a model than predicting the original, complex data values
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Design: A Two-Stage Framework

An overview of our offline preparation and runtime compression pipeline.
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Design: Mode 1 - Error-Bounded Hybrid Compression

Enhancing existing compressors by predicting the error with cross-field info

> @Goal: Improve the FY
compression ratio of Reconstruoted data points.

NN\

compressors like SZ3 while
respecting strict error bounds

Data points not yet predicted.

> Method: uses ANCHOR FIELDS
to predict the residual error of

d;
Reconstructed value.

f
€

the local predictor (e.g., Oross-field predioted resicual
interpolation) )

Local prediction/Cross-field
prediction.

How we enhance the interpolation prediction

10
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Design: Mode 2 - Fully Cross-field Prediction

Achieving extreme compression by reconstructing fields entirely from anchors.

> @oal: highest possible compression ratio under scenarios where strict error
bounds are not essential (e.g., visualization)

> Method: Reconstructs the target field entirely from its anchor fields

> Two-Stage NN: It uses two networks: an initial predictor generates a first
estimate, and a second U-Net-like model corrects the residual error

> Result: Theoretically infinite compression ratio, limited only by model size

11
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Design: Automated Anchor Field Selection

Finding the most informative predictors without expert knowledge.

> Challenge %6-4
) ] 2E-4
> Exhaustive anchor search is too costly w |
=
> Manual selection needs domain knowledge e
OE+O
> Our Solution: A Dual-Sorting Process. " . W T‘EH 20 25 30
L
> Stage 1 (Pre-sort): Pearson correlation-based sorting Red line highlights the significant drops

> Stage 2 (Refine): Use a lightweight NN to evaluate the
top-K candidates, selecting those that cause the largest
drop in Mean Squared Error (MSE)

12
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Design: Resolving Circular Dependencies

Creating a valid compression order from the dependency graph.

> Problem: Anchor selection creates a directed graph that may contain cycles (e.g., A predicts
B, B predicts A), causing deadlocks

> Step 1 (Detect Cycles): We use Tarjan's algorithm to efficiently find all Strongly Connected
Components (SCCs), which are guaranteed to contain any and all cycles in the graph

> Step 2 (Break Cycles): Within each SCC, a greedy algorithm prunes the least important edges
to break the cycles, transforming the graph into a Directed Acyclic Graph (DAG)

> Result: A valid, topological order for compression

13
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Design: Resolving Circular Dependencies

——

—% TGCLDIWP —= PSL

TREFMXAV FSNTOAC

FLDS -

7
PCONVB — FSDSC

—

\ CLDHGH
> e
FSNTOA

hS = NEEAN /
e

-

e AN

A sub compression graph of CESM-ATM
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Design: Our Neural Network Models

Network structure

> For Error-Bounded Mode:
> A lightweight CNN with several residual blocks

> Kernel size is set to 5 to align with the SZ3 cubic interpolation predictor

> For Fully Cross-Field Mode:
> A two-stage design inspired by boosting learning
> Initial Predictor: A CNN-based model for the first estimate

> Residual Model: A U-Net-like architecture to capture global context and correct the initial
prediction’s error

15
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Evaluation: Experiment Setup

> Baseline: We compare against SZ3 with

Name Dims Fields Description
its interpolation predictor, a state-of- Nyx £ 19%E19%5 12 6 Cosmology simulation
the-art, widely-used lossy compressor CESM-ATM  1800x3600 79  Climate simulation

> Metrics: Performance is measured by: Datasets Used
> Compression Ratio (CR)
> Data Quality (PSNR)

> Hardware

» 2X Intel Xeon E5-2620v4 with 4xVV100

16
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Evaluation: Model Training & Convergence

Verifying that the neural network models learn effectively.

> Model 1: Predicts 1 OE+00
residual error in the ' ‘\
, 10E-O1 | \ |
error-bounded mode 2 |
& 10E-02
-
©
|_

> Models 2 & 3: Work as a '
two-stage predictor LOE-OS 1 m
(initial prediction + 1.0E-04 S— S S

O 200 400 600 O 200 4008600 O 200 400 600 800

residual correction) in Epoch Epech Epoch

the fully cross-field

(a) Model 1. (b) Model 2. (c) Model 3.
mode

17
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Evaluation: Improved Error Distribution at Similar Compression Ratio

Our method concentrates the prediction error closer to zero.

> Enhanced prediction reduces the error
value range

o _  — Original Error
> Error distribution becomes more 10° | |mmm Enhanced Error

concentrated, aiding entropy encoding

Frequency
=
-
L

e
—20 —10 0 10 20

Error
The distribution of prediction error of FSNT field in CESM-ATM

18
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Evaluation: Detailed Result Using Mode 1

Improvement on single field

Error Bound 2E-3 1E-3 5E-4 2E-4 5E-5
PS 265.36 143.96 86.58 47.85 21.58
FSNT 63.51 37.87 23.99 14.38 8.38
SRFRAD 74.21 42.58 26.53 15.34 8.4
SZ3 CESM-ATM
FSDS 58.81 35.23 22.4 13.52 8.02
FLNT 74.56 42 25.66 14.83 8.2
LWCF 55.25 32.43 20.53 12.22
PS 295.34(+11.3%) | 178.78(+24.19%) | 117(+35.14%) | 69.01(+44.22%) 33.89(+57.04%)
FSNT 76.05(+19.74%) | 49.72(+31.29%) | 35.94(+49.81%) | 26.23(+82.41%) 16.36(+95.23%)
SRFRAD | 112.95(+52.2%) | 68.38(+60.59%) | 45.03(+69.73%) | 29.03(+89.24%) 17.07(+103.2%)
Ours CESM-ATM
FSDS ' 4538(+28.81%) | 32.81(+46.47%) | 22.86(+69.08%) 13.44{+67.58%)
FLNT 42.25(+0.60%) | 31.84(+24.08%) | 21.54(+45.25%) 12.57(+53.29%)
LWCF 34.31(+5.80%) 24.44(+19.05%) | 18.11(+48.20%)

12.42[+70.37%)

19
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Evaluation: Rate-Distortion Comparison Under Mode 1

95
85 |
% % r
265
65 | —+—S82Z3 ——Ours
45 . .
2 0 1 2 3 4
Bit Rate Bit Rate Bit Rate
(a) CESM-FSNT (b) CESM-PS (c) CESM-SRFRAD
95 956 95
86 r 85 85
% 75 % 75 r % 75
D 65 Des | D g5
b5 ——S87Z3 ——0Ours 66 ——S73 ——Ours 65 ——87Z3 ——Ours
45 | 45 | 45 !
0 1 2 3 4 0 1 2 3 = 0 1 2 3 4
Bit Rate Bit Rate Bit Rate
(d) CESM-FLNT (e) CESM-FSDS (f) CESM-LWCF

Rate-Distortion comparison of 6 fields selected from CESM-ATM
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Evaluation: Enhanced Visual Quality

Preserving fine-grained details and reducing compression artifacts.

SZ3(PSNR=59.11) Ours(PSNR=59.29)

21
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Evaluation: Enhanced Visual Quality

Preserving fine-grained details and reducing compression artifacts.

(a) Original (b) SZ3 (c) Our Framework
(CR=112.93, PSNR=59.55) (CR=112.95, PSNR=63.23)

22



Introduction

Background

Design

Evaluation

Evaluation: Overall Performance on Full Datasets

Backmatter

Error Bound 2E-2 1E-2 5E-3 2E-3 1E-3 5E-4 2E-4 1E-4 5E-5
o7s | CESM-ATM 630.35 353.15 198.13 98.98 61.79 40.61 24.96 18.23 13.91
Nyx 116.77 69.59 45.61 27.95 19.91 14.54 9.97 7.79 6.33

Oure CESM-ATM | 752.01(+19.3%) | 374.99(+6.19%) | 209.22(+5.60%) | 104.69(+5.76%) | 66.07(+6.94%) | 44.15(+8.73%) | 27.58(+10.48%) | 20.15(+10.51%) | 15.34(+10.31%)
Nyx 129.97(+11.3%) | 79.18(+13.78%) | 46.19(+1.3%) 27.95 19.91 14.54 9.97 7.79 6.33

23
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Conclusion Future work

> Propose a novel framework that leverages > Explore more architectures to further
overlooked cross-field correlations to improve both compression ratio and
enhance compression throughput

> Design a fully automated anchor selection > Extend the framework across 3

method to make the framework practical broader range of scientific applications

and robust and datasets

> Extend and validate the framework across a
broader range of scientific applications and
datasets

> Provide up to 19.3% overall compression
ratio improvement and superior visual
quality

24



Thank you!

Any questions are welcome! _
O 70

ot TN
Contact: Youyuan Liu youyuan.liu@temple.edu *Er' |:.-;..':|-
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