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Edge Computing
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https://medium.com/@mou.abdelhamid/learning-computer-vision-machine-learning-c1521ee6ed08
https://www.liquidweb.com/blog/client-server-architecture/
https://fpgainsights.com/wireless-networking/role-of-wireless-networking-in-autonomous-vehicles/

Real-time 
machine vision

Web application
Autonomous vehicular

networks

App.

Edge

Cloud

Edge node Edge node

• Key-value store (KVS) critical 
component for edge storage

• Edge storage requires
▪ Low latency
▪ High throughput
▪ Low server resource utilization

• Edge servers have - 
▪ Limited compute
▪ Require low power 

consumption

ValueKey
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What is a Data Processing Unit (DPU)?

• SmartNIC or DPU

• Network Interface Card (NIC) facilitates communication between 
nodes
▪ Cannot perform any additional operations

• DPU adds computing power to a regular NIC

• Components
▪ Computing elements 
▪ On-chip memory
▪ Hardware accelerators
▪ Network adapter
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source: https://premioinc.com/blogs/blog/smartnic-vs-regular-nic-differences-explained



Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced

NVIDIA BlueField DPUs
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BlueField-1 BlueField-2 BlueField-3

Network ConnectX-5
Up to 100 Gbps

ConnectX-6
Up to 200 Gbps

ConnectX-7
Up to 400 Gbps

Compute Up to 16 ARMv8 A72 Up to 8 ARMv8 A72 Up to 16 ARMv8.2 A78

Memory Up to 16GB DDR4 DRAM Up to 32GB DDR4 DRAM 32 GB DDR5 DRAM

Hardware 
accelerators

DMA engine
Compression/Decompression
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DPUs Rise in Edge

• Low power devices

• Compute units and hardware 
accelerators help edge applications 
offload tasks
▪ Better utilization of limited host 

computing resources
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source - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9868927

Partial (a) and full (b) in-network function offload at edge

BlueField (BF) DPU architecture
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Related Work
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Existing KVS Designs 
Target edge deployments

DPUs at Edge
Telemetry, network security, Load balancing

DPU Offloading
Used for MPI, compression

No co-design with DPUs

Yet unexplored for Edge KVS

Fine-grained KVS offloading untapped

We are the first work to explore the performance benefits of fine-grained KVS offloading to DPUs at edge

DPU-KV achieves 68% lower latency and 36% higher throughput over CPU-based KVS and naïve KVS offloading
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Testbed and Workload

• Two edge host machines (server and client)
• 12-core 3.3 GHz Intel Xeon E-2136 CPU and 32GB DRAM
• Use lower-performance hosts to mimic low-power edge systems

• Workloads
▪ YCSB A (50% GET), YCSB B (95% GET), YCSB C (100% GET)

• Key-value request generator (MICA client)
▪ ~200 million key-value pairs
▪ 8B key, 8B value
▪ Uniform and Skewed (Zipfian 0.99) key distributions
▪ Uses all cores (12)
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Conventional Edge KVS Fall Short on 
Performance 
• Redis KVS popular in edge and 

cloud

• MICA KVS offers high-performance

• Redis achieves low throughput
▪ 127x lower throughput than MICA at 

50us latency
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Performance comparison of in-memory
Redis and MICA KVS on host 

Choose to Co-design MICA KVS with DPU
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Coarse-Grained DPU Offloading Limits 
Performance

Coarse-grained offloading (DPU-only)

• With BF-2 exhibits lower performance than CPU-only with BF-2

• With BF-3 exhibits superior performance than CPU-only with BF-3
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Performance comparison of CPU-only and
DPU-only KVS for YCSB workloads

CPU-only 
(no offloading)

DPU-only 
(full offloading)

Research question: Can fine-grained KVS 
offloading provide better performance than 

coarse-grained offloading?



Parallel and Distributed Systems Laboratory, UC MercedParallel and Distributed Systems Laboratory, UC Merced HPDC’25 11

Offloading Benefits of KVS to DPUs at Edge

• Fine-grained offloading
▪ Improve performance (latency and throughput)
▪ Enable resource sharing among other edge services/applications by freeing up resources consumed by KVS tasks
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C1 – KVS Components & Profiling

• Processing engine

• Communication engine

• Communication engine is 
more CPU-intensive
▪ CPU utilization

▪ Time consumed
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CPU usage of KVS components

KVS time breakdown for KVS

70%

Only 10%-19% time
spent in processing engine
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C1 – Logical Decomposition & KVS Offloading
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Communication engine offloadProcessing engine offload

• Communication engine consumes most CPU cycles (~70%)
• Offloading PE will only help save up to 20% host CPU cycles

• KV item set size of in-memory KVS >> DPU memory

• Communication engine memory requirement ~ 1-4GiB << DPU memory

Why communication engine offloading?
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C2 – Efficient Host-DPU Data Path

• Key-value-based queue-pair (QP) model
▪ Per-core send and receive QPs on both host and DPU
▪ Minimal metadata

❖  Reduces bytes transferred across PCIe
❖  63.67%/83.3% and 66.67%/81.81% bytes per network packet for requests/responses in GET 

& SET 
▪ Enabling efficient data transfer over PCIe when offloading KVS component to DPUs 
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KV QP reduces data/metadata transfer for KV requests and responsesQueue Pair
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C2 – Efficient Host-DPU Data Path

• DMA APIs enable both DPU SoC and host to use DPU’s DMA engine for buffer 
transfers over PCIe
▪ Blocking (Polling or Event-based) vs. non-blocking
▪ Initiator of DMA request (host or DPU)

• Non-blocking DPU DMA gives low latency
▪ Avoids checking completion for each KV request
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C3 – Hiding Data Movement Penalty

• KVS request processing stages
▪ Parse
▪ Process
▪ Respond

• Optimizing fine-grained KVS offloading 
(DPU-KV-lat)
▪ Overlapped KV request/response processing
▪ Reducing DMA operations per batch
▪ Response processing optimization  

• Hides data movement penalty and 
reduces latency

HPDC’25 16

Overlapped KV processing
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C4 – Reducing Host Resources 

• DPU-KV-lat 
▪ One-to-one mapping between host KVS 

cores and DPU communication cores
❖ Parallel access to individual KV partitions 

▪ Leads to high host core utilization 

• Insight: Offloading communication 
engine frees up host CPU cycles
▪ Enables host to handle more KV requests 

with fewer CPU cores (DPU-KV-sav)
❖ Host processes KV requests in round-robin

HPDC’25 17

DPU-KV-lat

DPU-KV-sav
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C5 – Performance with Resource Savings 

• Throughput of DPU-KV-lat and DPU-KV-sav 
(BF-2) > DPU-only KVS but < CPU-only KVS

• Dual communication engine-based design

• Utilizes DPU cores and spare CPU cores 
(enabled by C4)
▪ One CPU core processes requests from DPUs 

(main CPU core)
▪ Spare cores expose themselves as additional 

endpoints to client
▪ Processes requests for same KVS memory 

backend
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Dual communication engine
(DPU-KV-dual)
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C5 – Finding Spare Cores in DPU-KV-dual
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Three host cores (1 main + 2 spare) sufficient

Adding more spares increases CPU use but not
throughput due to host PCIe congestion

1. DPU’s communication engine sends extracted KV requests to host
2. Host communication engine receives raw client packets
 
Causes increased PCIe traffic to/from host leading to congestion
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C5 – Host PCIe Congestion

• PCIe congestion on host depends on
▪ Concurrent connections with client
▪ DMA buffer size

• Measuring per-batch host-DPU DMA latency 
▪ More PCIe congestion → higher DMA latency

• Total throughput stagnates when DMA size is 
> 1𝐾𝐵 
▪ DPU throughput increase (4.7%) offset by host’s 

throughput decrease (4.1%) for 2 KB - 4 KB

• Host-DPU data movement cost not fixed and 
proportional to host PCIe congestion
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C5 – Mitigating Host PCIe Congestion

• Sharding-based design (DPU-KV-shrd)

• KVS partitioned and executed 
independently on both host and DPU 

• Avoids host-DPU communication during 
KV request processing 

HPDC’25 21
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DPU Testbed
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DPU Mode Compute Memory Port Speed DOCA SDK OS

BlueField-2 DPU Separated Host 8 core A72 @ 2.5GHz 16GB DDR4 200 Gbps v1.5 Ubuntu 20.04

BlueField-3 DPU DPU 8 core A78 @ 3GHz 16GB DDR5 400 Gbps v2.5 Ubuntu 22.04

DPU hardware

• Allows keeping rest of the hardware and major portion of software 
setup same except for choice of DPU

• Comparison of BF-2 and BF-3 shows generational hardware impact
• BF-2 < Edge Host < BF-3
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Implementation Tips

• DPU-KV prototyped with MICA2 KVS
• Connection management

▪ MICA uses etcd
▪ DPU registers endpoints with etcd 

❖  No code changes are required for the MICA2 KVS client 

• Porting to ARM architecture
▪ DPDK APIs
▪ x86 instructions

HPDC’25 23

MICA2 Ported MICA2

DPDK APIs rte_eth_dev_filter_ctrl rte_flow_create
rte_flow_validate

x86 instructions PAUSE
RDTSC

YIELD
CNTVCT_EL0
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Implementation Tips

• Timestamp
▪ Enable latency tracking by timestamping each KV request at client
▪ Server echoes timestamp back in KV response

• DOCA DMA
▪ Proposed Key-Value QP design uses DPU’s DMA engine for host-DPU KV data exchange 
▪ DMA APIs available via DOCA SDK

❖  Variation between DOCA SDK versions used by our BF-2 and BF-3 
❖  doca_pe added task completion callback, requiring DMA buffer length reset before reuse

HPDC’25 24

DMA API BF-2 BF-3

Hardware initialization doca_workq doca_pe

DMA job submission doca_workq_submit doca_task_submit 

Completion status check doca_workq_progress_retrieve doca_pe_progress 
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Evaluation

• DPU-KV (KVS server)
▪ Each key space partition 

assigned to single core
❖ Utilizes all DPU cores
❖ CPU cores usage varies 

based on design

▪ No modification to KVS’s 
memory allocator and 
indexing schemes 
(processing engine)

▪ Pre-allocate/register 
DMA buffers per core 
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KVS designs Core idea/principle Host cores DPU

Baseline

CPU-only SOTA Ethernet-based KVS, MICA 8

DPU-only Coarse-grained KVS offloading 0 BF-2/3

Fine-grained KVS offloading

DPU-KV-lat Communication engine offload 8 BF-2/3

DPU-KV-sav One-to-many CPU-DPU core 
mapping

1 BF-2/3

DPU-KV-dual Dual communication engine 3 BF-2

DPU-KV-shrd KV sharding 8 BF-2
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DPU-Offloaded KVS Performance with BF-2
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• DPU-KV-lat reduces latency by up to 16% and 69% over DPU-only and CPU-only
▪ Communication engine offloading, overlapped KV request/response processing, reducing DMA operations per batch, etc.

• DPU-KV-sav reduces server CPU utilization by ~88% compared to CPU-only and DPU-KV-lat
▪ One-to-many processing-to-communication engine core mapping
▪ DPU-KV-sav matches DPU-KV-lat performance with fewer host cores

❖  Freed host cycles via offloading can be used to run the non-offloaded KVS component (processing engine) on fewer host cores

▪ DPU-KV-lat optimizations carry over effectively to DPU-KV-sav

69%88% 88% 88%

YCSB A YCSB B YCSB C
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DPU-Offloaded KVS Performance with BF-2
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• DPU-KV-sav trades 32%–41% throughput compared to CPU-only for 
maximum host resource savings
▪  BF-2’s wimpy SoC cores cannot fully saturate host’s KVS engine

32%41% 31%

YCSB A YCSB B YCSB C
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DPU-Offloaded KVS Performance with BF-2
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• DPU-KV-dual achieves up to 1.83x and 1.7x higher throughput over DPU-only and DPU-KV-sav 
▪ Throughput boost by utilizing spare host cores (freed by DPU-KV-sav) to handle extra KV requests

• DPU-KV-dual reduces latency by up to 69% and host core usage by 63% compared to CPU-only
▪ Delivers slightly higher throughput than CPU-only (up to 1.07x)

• DPU-KV-dual’s latency reduction from main host core handling DPU requests, reusing DPU-KV’s 
latency optimizations

1.7x

YCSB A YCSB B YCSB C

69%
63%
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DPU-Offloaded KVS Performance with BF-2
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• DPU-KV-shrd consumes 2.7x more host cores than DPU-KV-dual
▪ Achieves up to 1.5x higher throughput than CPU-only 

• Use DPU-KV-shrd to achieve high throughput

• DPU-KV-dual ideal for edge environments with limited host resources
▪ Achieves lower latency and CPU-like throughput while saving host resources compared to CPU-only KVS

1.5x

YCSB A YCSB B YCSB C

2.7x
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DPU-Offloaded KVS Performance with BF-3

• CPU-only exhibits lower performance than DPU-only 
▪ CPU-only has 20% lower throughput and 24% higher latency than DPU-only
▪ Brawnier SoC in BF-3 enables higher KV request processing than edge host

• DPU-KV-sav shows up to 49% lower throughput and 45% higher latency 
than DPU-only 
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49% 43%
42% 47% 44% 41%
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DPU-Offloaded KVS Performance with BF-3

• DPU-KV-lat shows 33% and 21% lower latency, along with up to 36% and 10% 
higher throughput, compared to CPU-only and DPU-only

• Similar to BF-2, offloading KVS communication engine and optimizing latency
▪  Fewer DMA operations, overlapped KV processing, and response optimization

• DPU-KV-lat can help edge applications using KVS achieve low latency and high 
throughput 
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21%33%36%
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Scalability Evaluation
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Uniform Skewed Uniform Skewed

• DPU-KV-lat, DPU-KV-sav, DPU-KV-dual, and DPU-KV-shrd throughput scales 
with DPU cores for BF-2

• With BF-3, DPU-KV-sav saturates at 20.5 Mops 
▪ Four BF-3 ARM cores enough to saturate processing engine on one host CPU core
▪ Unlike DPU-KV-sav on BF-2

BF-2 BF-3
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Scalability Evaluation
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Uniform Skewed Uniform Skewed

• DPU-KV-lat performance scales linearly
▪ 1:1 core allocation between communication and processing engines

• Efficient host-DPU data path enables linear scalability of DPU-
offloaded KVS with limited PCIe traffic

BF-2 BF-3

DPU-KV-lat
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Summary
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Problem

Edge key-value stores demand low latency and/or high throughput—requirements that existing edge 
KVS solutions or coarse-grained KVS offloading to DPUs at edge fail to meet

Objective

Assess the performance benefits of fine-grained KVS offloading over coarse-grained offloading and
CPU-based KVS

Key Idea

Identify and offload most CPU-intensive component (KVS communication engine) to DPU and minimize 
host-DPU data movement overheads

Key Contributions

Proposed DPU-KV, a novel DPU-offloaded KVS that:
• Modularizes KVS and explores various fine-grained KVS offloading architectures
• Eliminates up to 83% of metadata transfer for KV data using queue pair model
• Reduces latency by up to 68%, host core usage by 63%, and improves performance by 36%
       compared to CPU-only and coarse-grained KVS offloading to DPUs
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Thank you!

http://padsys.org/
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