
FluidFaaS: A Dynamic Pipelined Solution for Serverless
Computing with Strong Isolation-based GPU Sharing

Xinning Hui1, Yuanchao Xu2, Xipeng Shen1

North Carolina State University1, University of California, Santa Cruz2

ACM HPDC 2025, Notre Dame, IN, USA



…

o Serverless computing popular cloud paradigm

o Users deploy apps, providers provision resources

o Many benefits

o Simple and modular programming

o Automatic resource scaling

o Pay-as-you-go model

o AWS lambda, Microsoft Azure, IBM Cloud, Google cloud functions
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What is Serverless Computing?
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ML on Serverless Computing
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Deep learning inference application

GPU

GPU sharing



GPU in Serverless Computing
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[1] source: https://www.photoroom.com/inside-photoroom/so-you-want-to-rent-an-nvidia-h100-cluster-2024-consumer-guide

Low GPU utilization



GPU Sharing
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GPU Sharing
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Multi-Instance GPU (MIG)

pod pod

MIG 1 MIG 2

Good for Serverless
• MIG is preconfigured and reconfigure takes 

time
• MIG partitions example

Hardware isolated
& performance and security

guarantee

Profile Name Fraction of 
Memory Fraction of SMs Number of 

instance

MIG 1g.10gb 1/8 1/7 7

MIG 2g.20gb 2/8 2/7 3

MIG 3g.40gb 4/8 3/7 2

MIG 4g.40gb 4/8 4/7 1

MIG 7g.80gb Full 7/7 1



Gaps for using MIG in Serverless ML
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❖ Gap #1: MIG underutilization caused by resource fragmentation

❖Rigid MIG partition cause the MIG underutilized

❖Dynamic reconfiguration during runtime is impractical

4g.40gb
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1g.10gb

3g.40gb

2g.20gb

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2 GPU 3

requires 4g.40gb
1g.10gb

Request arrives

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2

1g.10gb

(a) System status (b) Default assignment

idle

used



Gaps for using MIG in Serverless ML
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Only 4g.40gb is utilized

Active GPUs Minimal required GPUs

4g.40gb

2g.20gb

1g.10gb

GPU 1

4g.40gb

2g.20gb

1g.10gb

GPU 2

4g.40gb

2g.20gb

1g.10gb

GPU 3

4g.40gb

2g.20gb

1g.10gb

GPU 4

❖ Gap #1: MIG underutilization caused by resource fragmentation



Gaps for using MIG in Serverless ML
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❖  Gap #2: MIG underutilization caused by exclusivity in warm state

❖Keeping a model active and precludes its resources from being used.

Average active percentage is 16.1%, MIGs operate at less than 35% for 90% of time.



FluidFaaS
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•Underutilization caused by resource fragmentation
• Automatic pipeline construction on-the-fly

• Underutilization caused by exclusivity in warm state.
• Hotness-aware eviction-based time sharing



FluidFaaS

17

❖  Design point #1: Automatic pipeline construction on-the-fly

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2 GPU 3

requires 4g.40gb
1g.10gb

Request arrives idle

used

4g.40gb

2g.20gb

1g.10gb

3g.40gb
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1g.10gb

GPU 1 GPU 2

1g.10gb

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1

3g.40gb

2g.20gb

1g.10gb

GPU 2

1g.10gb

(a) System status (b) Default assignment (c) using intra-GPU

MIGs

(d) using inter-GPU 

MIGs

Decompose the workflow into multi MIGs 

One process one MIG (flexibility & throughput)  

Programming support

Runtime support



FluidFaaS – Automatic Pipeline Construction on-the-fly 
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❖Programming Support: transparent to users and adaptable at runtime.

…
Possible pipelines

Program support defines the minimal 
block.



FluidFaaS – Automatic Pipeline Construction on-the-fly 
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❖ Runtime Support: balanced pipeline and adaptive to resource availability

…
Possible pipelines

Runtime support construct the pipeline 
and provide the interface to run the 

pipeline.



FluidFaaS – Automatic Pipeline Construction on-the-fly 
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❖  Runtime Support: balanced pipeline and adaptive to resource availability

Get all possible
consecutive pipelines

Calculate CV



FluidFaaS – Automatic Pipeline Construction on-the-fly 
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❖  Runtime Support: balanced pipeline and adaptive to resource availability

❖ Coefficient of variation (CV) Get all possible
consecutive pipelines

Calculate CV

𝐶𝑉 = 𝑠𝑡𝑑(𝑡1, 𝑡2, … , 𝑡𝑛)/mean(𝑡1, 𝑡2, … , 𝑡𝑛), lower is better.

Sort all pipelines regarding
CV.

If can
accommodate

Get one pipeline

No

Yes



FluidFaaS – Automatic Pipeline Construction on-the-fly 
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❖ Runtime support: transparent to users and adaptable at runtime.

❖Create a separate process for each MIG

❖Communicate via shared memory.

❖Reside in Invoker



FluidFaaS
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• Underutilization caused by resource fragmentation
• Automatic pipeline construction on-the-fly

•Underutilization caused by exclusivity in warm state.
• Hotness-aware eviction-based time sharing



FluidFaaS - Hotness-aware Eviction-based Time Sharing
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❖  Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.



FluidFaaS - Hotness-aware Eviction-based Time Sharing
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❖  Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).
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❖  Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).

❖Clod state vs. warm state (in the CPU)

❖Heterogeneity-aware request routing.

❖urgent to exclusive and non-urgent to the time sharing instance.

❖Pipeline migration

❖migrate pipeline instance to non-pipeline when large MIG slices are available.



Evaluation
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❖  Methodology:

❖Hardware

❖8 * A100 (80 GB)

❖1g.10gb + 2g.20gb + 4g.40gb
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❖  Methodology:

❖Hardware

❖8 * A100 (80 GB)

❖1g.10gb + 2g.20gb + 4g.40gb

❖Application

❖ML inference applications

❖Baseline.

❖ESG (HPDC24) – most resource efficient MIG, no pipeline.

❖ INFless (ASPLOS22) – MPS based Serverless platform, no pipeline.



Evaluation
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❖  Evaluated metrics: SLO hit rates.

91% high in medium workloads.

61% high in heavy workload.

INFless and ESG similar performance due to non-pipeline execution model.
[1] Xinning Hui, etc. ESG: Pipeline-Conscious Efficient Scheduling of DNN Workflows on Serverless Platforms with Shareable GPUs , 2024, HPDC.
[2] Yanan Yang, etc. INFless: a native serverless system for lowlatency, high-throughput inference. 2022, ASPLOS.



Evaluation

34

❖ Evaluated metrics: End-to-end latency breakdown.

ESG (left) vs. FluidFaaS (right)

2.36x lower latency than ESG.

Data transfer time is negligible.



Evaluation
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❖ Evaluated metrics: Throughput

75% higher in heavy workload.

25% higher in medium workload.



➢Identifies the fundamental reason for severe GPU under-utilization, MIG
resource fragmentation and exclusive keep-alive policy.

➢Give programming support and runtime support to enable on-the-fly
pipeline construction.

➢Propose Hotness-aware eviction-based time sharing.

➢Empirically show 25%-75% improvement in system throughput and 
improving up to 90% SLO hit rates.

Conclusion
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Thanks for your time!
Questions are more than welcomed!
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