
FluidFaaS: A Dynamic Pipelined Solution for Serverless
Computing with Strong Isolation-based GPU Sharing

Xinning Hui1, Yuanchao Xu2, Xipeng Shen1

North Carolina State University1, University of California, Santa Cruz2

ACM HPDC 2025, Notre Dame, IN, USA

…

o Serverless computing popular cloud paradigm

o Users deploy apps, providers provision resources

o Many benefits

o Simple and modular programming

o Automatic resource scaling

o Pay-as-you-go model

o AWS lambda, Microsoft Azure, IBM Cloud, Google cloud functions

2

What is Serverless Computing?

How Does Serverless Computing Work?

3

Frontend

Deploy function

Functions

Remote storage

How Does Serverless Computing Work?

Remote storage

Requests

Controller

Invokernode 1 Invokernode 2

…

Frontend

4

Functions

How Does Serverless Computing Work?

Remote storage

Requests

Controller

Invokernode 1 Invokernode 2

…

Frontend

5

Container
1

Functions

Retrieve function

How Does Serverless Computing Work?

Remote storage

Requests

Controller

Invokernode 1 Invokernode 2

…

Frontend

6

Container
1

Container
2

Container
3

Functions

Retrieve function

ML on Serverless Computing

7

Deep learning inference application

GPU

GPU sharing

GPU in Serverless Computing

8
[1] source: https://www.photoroom.com/inside-photoroom/so-you-want-to-rent-an-nvidia-h100-cluster-2024-consumer-guide

Low GPU utilization

GPU Sharing

9

pod pod

Time Sharing

Not solve
underutilization

GPU

GPU Sharing

10

pod pod

Time Sharing Spatial Sharing

pod pod

Multi-Process Service (MPS)

Performance interference
& Security concern

Not solve
underutilization

GPU

GPU

GPU Sharing

11

pod pod

Time Sharing

Not solve
underutilization

Spatial Sharing

pod pod

Multi-Process Service (MPS)

Performance interference
& Security concern

Multi-Instance GPU (MIG)

pod pod

MIG 1 MIG 2

Hardware isolated
& performance and security

guarantee

GPU

GPU GPU

GPU Sharing

12

Multi-Instance GPU (MIG)

pod pod

MIG 1 MIG 2

Good for Serverless
• MIG is preconfigured and reconfigure takes

time
• MIG partitions example

Hardware isolated
& performance and security

guarantee

Profile Name Fraction of
Memory Fraction of SMs Number of

instance

MIG 1g.10gb 1/8 1/7 7

MIG 2g.20gb 2/8 2/7 3

MIG 3g.40gb 4/8 3/7 2

MIG 4g.40gb 4/8 4/7 1

MIG 7g.80gb Full 7/7 1

Gaps for using MIG in Serverless ML

13

❖ Gap #1: MIG underutilization caused by resource fragmentation

❖Rigid MIG partition cause the MIG underutilized

❖Dynamic reconfiguration during runtime is impractical

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2 GPU 3

requires 4g.40gb
1g.10gb

Request arrives

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2

1g.10gb

(a) System status (b) Default assignment

idle

used

Gaps for using MIG in Serverless ML

14

Only 4g.40gb is utilized

Active GPUs Minimal required GPUs

4g.40gb

2g.20gb

1g.10gb

GPU 1

4g.40gb

2g.20gb

1g.10gb

GPU 2

4g.40gb

2g.20gb

1g.10gb

GPU 3

4g.40gb

2g.20gb

1g.10gb

GPU 4

❖ Gap #1: MIG underutilization caused by resource fragmentation

Gaps for using MIG in Serverless ML

15

❖ Gap #2: MIG underutilization caused by exclusivity in warm state

❖Keeping a model active and precludes its resources from being used.

Average active percentage is 16.1%, MIGs operate at less than 35% for 90% of time.

FluidFaaS

16

•Underutilization caused by resource fragmentation
• Automatic pipeline construction on-the-fly

• Underutilization caused by exclusivity in warm state.
• Hotness-aware eviction-based time sharing

FluidFaaS

17

❖ Design point #1: Automatic pipeline construction on-the-fly

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2 GPU 3

requires 4g.40gb
1g.10gb

Request arrives idle

used

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2

1g.10gb

4g.40gb

2g.20gb

1g.10gb

3g.40gb

2g.20gb

1g.10gb

GPU 1 GPU 2

1g.10gb

4g.40gb

2g.20gb

1g.10gb

GPU 1

3g.40gb

2g.20gb

1g.10gb

GPU 2

1g.10gb

(a) System status (b) Default assignment (c) using intra-GPU

MIGs

(d) using inter-GPU

MIGs

Decompose the workflow into multi MIGs

One process one MIG (flexibility & throughput)

Programming support

Runtime support

FluidFaaS – Automatic Pipeline Construction on-the-fly

18

❖Programming Support: transparent to users and adaptable at runtime.

…
Possible pipelines

Program support defines the minimal
block.

FluidFaaS – Automatic Pipeline Construction on-the-fly

20

❖ Runtime Support: balanced pipeline and adaptive to resource availability

…
Possible pipelines

Runtime support construct the pipeline
and provide the interface to run the

pipeline.

FluidFaaS – Automatic Pipeline Construction on-the-fly

21

❖ Runtime Support: balanced pipeline and adaptive to resource availability

Get all possible
consecutive pipelines

Calculate CV

FluidFaaS – Automatic Pipeline Construction on-the-fly

22

❖ Runtime Support: balanced pipeline and adaptive to resource availability

❖ Coefficient of variation (CV) Get all possible
consecutive pipelines

Calculate CV

𝐶𝑉 = 𝑠𝑡𝑑(𝑡1, 𝑡2, … , 𝑡𝑛)/mean(𝑡1, 𝑡2, … , 𝑡𝑛), lower is better.

Sort all pipelines regarding
CV.

If can
accommodate

Get one pipeline

No

Yes

FluidFaaS – Automatic Pipeline Construction on-the-fly

23

❖ Runtime support: transparent to users and adaptable at runtime.

❖Create a separate process for each MIG

❖Communicate via shared memory.

❖Reside in Invoker

FluidFaaS

24

• Underutilization caused by resource fragmentation
• Automatic pipeline construction on-the-fly

•Underutilization caused by exclusivity in warm state.
• Hotness-aware eviction-based time sharing

FluidFaaS - Hotness-aware Eviction-based Time Sharing

25

❖ Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

FluidFaaS - Hotness-aware Eviction-based Time Sharing

26

❖ Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).

FluidFaaS - Hotness-aware Eviction-based Time Sharing

27

❖ Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).

❖Clod state vs. warm state (in the CPU)

FluidFaaS - Hotness-aware Eviction-based Time Sharing

28

❖ Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).

❖Clod state vs. warm state (in the CPU)

❖Heterogeneity-aware request routing.

❖urgent to exclusive and non-urgent to the time sharing instance.

FluidFaaS - Hotness-aware Eviction-based Time Sharing

29

❖ Design principle: improve MIG utilization

❖ interleaved usage of MIG slice through eviction.

❖Exclusive hot state: high request load instance.

❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).

❖Clod state vs. warm state (in the CPU)

❖Heterogeneity-aware request routing.

❖urgent to exclusive and non-urgent to the time sharing instance.

❖Pipeline migration

❖migrate pipeline instance to non-pipeline when large MIG slices are available.

Evaluation

30

❖ Methodology:

❖Hardware

❖8 * A100 (80 GB)

❖1g.10gb + 2g.20gb + 4g.40gb

Evaluation

31

❖ Methodology:

❖Hardware

❖8 * A100 (80 GB)

❖1g.10gb + 2g.20gb + 4g.40gb

❖Application

❖ML inference applications

Evaluation

32

❖ Methodology:

❖Hardware

❖8 * A100 (80 GB)

❖1g.10gb + 2g.20gb + 4g.40gb

❖Application

❖ML inference applications

❖Baseline.

❖ESG (HPDC24) – most resource efficient MIG, no pipeline.

❖ INFless (ASPLOS22) – MPS based Serverless platform, no pipeline.

Evaluation

33

❖ Evaluated metrics: SLO hit rates.

91% high in medium workloads.

61% high in heavy workload.

INFless and ESG similar performance due to non-pipeline execution model.
[1] Xinning Hui, etc. ESG: Pipeline-Conscious Efficient Scheduling of DNN Workflows on Serverless Platforms with Shareable GPUs , 2024, HPDC.
[2] Yanan Yang, etc. INFless: a native serverless system for lowlatency, high-throughput inference. 2022, ASPLOS.

Evaluation

34

❖ Evaluated metrics: End-to-end latency breakdown.

ESG (left) vs. FluidFaaS (right)

2.36x lower latency than ESG.

Data transfer time is negligible.

Evaluation

35

❖ Evaluated metrics: Throughput

75% higher in heavy workload.

25% higher in medium workload.

➢Identifies the fundamental reason for severe GPU under-utilization, MIG
resource fragmentation and exclusive keep-alive policy.

➢Give programming support and runtime support to enable on-the-fly
pipeline construction.

➢Propose Hotness-aware eviction-based time sharing.

➢Empirically show 25%-75% improvement in system throughput and
improving up to 90% SLO hit rates.

Conclusion

36

Thanks for your time!
Questions are more than welcomed!

	Slide 1: FluidFaaS: A Dynamic Pipelined Solution for Serverless Computing with Strong Isolation-based GPU Sharing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

