ACM HPDC 2025, Notre Dame, IN, USA

FluidFaaS: A Dynamic Pipelined Solution for Serverless Computing with Strong Isolation-based GPU Sharing

Xinning Hui¹, Yuanchao Xu², Xipeng Shen¹

North Carolina State University¹, University of California, Santa Cruz²

What is Serverless Computing?

- Serverless computing popular cloud paradigm
 - Users deploy apps, providers provision resources
- Many benefits
 - Simple and modular programming
 - Automatic resource scaling
 - Pay-as-you-go model
- AWS lambda, Microsoft Azure, IBM Cloud, Google cloud functions

••

ML on Serverless Computing

Deep learning inference application

GPU in Serverless Computing

Low GPU utilization

Time Sharing

Not solve underutilization

Time Sharing

Spatial Sharing

Multi-Process Service (MPS)

Not solve underutilization

Performance interference & Security concern

Time Sharing

Spatial Sharing

Multi-Process Service (MPS)

Multi-Instance GPU (MIG)

Not solve underutilization

Performance interference & Security concern

Hardware isolated & performance and security guarantee

- MIG is preconfigured and reconfigure takes time
- MIG partitions example

Profile Name	Fraction of Memory	Fraction of SMs	Number of instance
MIG 1g.10gb	1/8	1/7	7
MIG 2g.20gb	2/8	2/7	3
MIG 3g.40gb	4/8	3/7	2
MIG 4g.40gb	4/8	4/7	1
MIG 7g.80gb	Full	7/7	1

Good for Serverless

Multi-Instance GPU (MIG)

Hardware isolated & performance and security guarantee

Gaps for using MIG in Serverless ML

- Gap #1: MIG underutilization caused by resource fragmentation
 - Rigid MIG partition cause the MIG underutilized
 - Dynamic reconfiguration during runtime is impractical

Gaps for using MIG in Serverless ML

Gap #1: MIG underutilization caused by resource fragmentation

Only 4g.40gb is utilized

Gaps for using MIG in Serverless ML

- ❖ Gap #2: MIG underutilization caused by exclusivity in warm state
 - * Keeping a model active and precludes its resources from being used.

Average active percentage is 16.1%, MIGs operate at less than 35% for 90% of time.

FluidFaaS

- Underutilization caused by <u>resource fragmentation</u>
 - Automatic pipeline construction on-the-fly
- Underutilization caused by **exclusivity in warm state**.
 - Hotness-aware eviction-based time sharing

FluidFaaS

Design point #1: Automatic pipeline construction on-the-fly

(c) using intra-GPU MIGs

(d) using inter-GPU MIGs

Decompose the workflow into multi MIGs

Programming support

One process one MIG (flexibility & throughput)

Runtime support

Programming Support: transparent to users and adaptable at runtime.

Program support defines the minimal block.

* Runtime Support: balanced pipeline and adaptive to resource availability

Runtime support construct the pipeline and provide the interface to run the pipeline.

* Runtime Support: balanced pipeline and adaptive to resource availability

Runtime Support: balanced pipeline and adaptive to resource availability

Coefficient of variation (CV)

 $CV = std(t_1, t_2, ..., t_n)/mean(t_1, t_2, ..., t_n)$, lower is better.

- * Runtime support: transparent to users and adaptable at runtime.
 - Create a separate process for each MIG
 - Communicate via shared memory.
 - ❖ Reside in Invoker

Shared memory in host

FluidFaaS

- Underutilization caused by <u>resource fragmentation</u>
 - Automatic pipeline construction on-the-fly
- Underutilization caused by <u>exclusivity in warm state</u>.
 - Hotness-aware eviction-based time sharing

- Design principle: improve MIG utilization
 - interleaved usage of MIG slice through eviction.

- * Design principle: improve MIG utilization
 - interleaved usage of MIG slice through eviction.
 - **Exclusive hot state:** high request load instance.
 - *Time sharing state: not actively busy instance (i.e., utilization below 30%).

- Design principle: improve MIG utilization
 - interleaved usage of MIG slice through eviction.
 - **Exclusive hot state:** high request load instance.
 - *Time sharing state: not actively busy instance (i.e., utilization below 30%).
 - Clod state vs. warm state (in the CPU)

- Design principle: improve MIG utilization
 - interleaved usage of MIG slice through eviction.
 - * Exclusive hot state: high request load instance.
 - ❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).
 - Clod state vs. warm state (in the CPU)
 - * Heterogeneity-aware request routing.
 - urgent to exclusive and non-urgent to the time sharing instance.

- Design principle: improve MIG utilization
 - interleaved usage of MIG slice through eviction.
 - * Exclusive hot state: high request load instance.
 - ❖ Time sharing state: not actively busy instance (i.e., utilization below 30%).
 - Clod state vs. warm state (in the CPU)
 - * Heterogeneity-aware request routing.
 - urgent to exclusive and non-urgent to the time sharing instance.
 - Pipeline migration
 - * migrate pipeline instance to non-pipeline when large MIG slices are available.

- * Methodology:
 - Hardware
 - *8 * A100 (80 GB)
 - ❖ 1g.10gb + 2g.20gb + 4g.40gb

- * Methodology:
 - ❖ Hardware
 - *8 * A100 (80 GB)
 - ❖ 1g.10gb + 2g.20gb + 4g.40gb
 - Application
 - ML inference applications

- Methodology:
 - ❖ Hardware
 - *8 * A100 (80 GB)
 - ❖ 1g.10gb + 2g.20gb + 4g.40gb
 - Application
 - ML inference applications
 - ❖ Baseline.
 - * ESG (HPDC24) most resource efficient MIG, no pipeline.
 - ❖ INFless (ASPLOS22) MPS based Serverless platform, no pipeline.

* Evaluated metrics: SLO hit rates.

91% high in medium workloads.

61% high in heavy workload.

INFless and ESG similar performance due to non-pipeline execution model.

* Evaluated metrics: End-to-end latency breakdown.

ESG (left) vs. FluidFaaS (right)

2.36x lower latency than ESG.

Data transfer time is negligible.

Evaluated metrics: Throughput

Conclusion

- Identifies the fundamental reason for severe GPU under-utilization, MIG resource fragmentation and exclusive keep-alive policy.
- ➤ Give programming support and runtime support to enable on-the-fly pipeline construction.
- **▶** Propose Hotness-aware eviction-based time sharing.
- Empirically show 25%-75% improvement in system throughput and improving up to 90% SLO hit rates.

Thanks for your time!
Questions are more than welcomed!