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Background

e What is PIC Data?

o Particle-In-Cell (PIC) is a widely used simulation method in plasma physics and other scientific domains.

e Scale of PIC Simulations

o PIC simulations generate TB to PB data per hour. iteration 0 k—1I k k+1  n id| x|y | 2 [uxluyluz] .-
Timeline 1 1 I | | Particle-p-1
‘l‘ Partic'le—p—z
* Popular Simulation Frameworks: | S
H ®
e o
> WarpX, EPOCH, and Geant4. o |®
7 e——p @ Particle-q-1
7 @ @ L ;
; ® Particle-q-2
. @ (] ;
* Common Analysis Tools: / Cell p Particle-q-
o openPMD-viewer, ParaView, and H5py Simulation Space Particle-in-Cell Particle Attributes

Figure 1: Particle data organization in PIC simulations.
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Background

e How 1s PIC data stored on HPC clusters?

o PIC data is typically stored in column-based format to optimize output performance.

* However, this leads to inefficiencies in analysis:

o The entire cell must be scanned even targeting a few particles.

(partitioned and simulated by m processes) (metadata files)

Filesystem Storage: data.(ﬂ data.ﬁ--- data.ﬁ--- data.nﬁ u meta |

. . (Column-based Storage) . .
results in scattered reads and high I/0 overhead. 8 | in each fite

o Filtering by one attribute and retrieving another

iteration 0 +-- k—1 k k+1--- n
| | | | |

l in each iteration

First organized by iterations: Time

id
Then organized by particle attributes: ll lx !y! é !uxiuyluzi

1 in each attribute
Last organized by

partitioned cell sequence:

Figure 2: Column-based storage of particle data on filesystem.
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Background

* Workflows of Particle Data Analysis

o Overview Visualization — observe the global distribution of particles
o Particle Selection — perform range queries based on particle attributes

o Particle Tracking — follow selected particles across iterations
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Iteration=300 Iteration=400
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Position Z le=S Position Z le=S
(a) Particle Overview and Selection (b) Particle Tracking

Figure 3: Particle distribution, selection, and tracking.
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Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

1. High Particle Query Latency on Large Datasets.

o A single query on a 1 TB dataset can take over an hour

o Re-reading the full dataset for each query is redundant and inefficient

@ 10 GB Dataset 100 GB Dataset I 1 TB Dataset
; 2013.90 2731.79 3466.07 3850.82
o 1k 1364.45 :
1 603.69 514.04
= 350.95 434.38
3 180.81000 159 200:27H 199.88 249.09 299.46
= 100 50.1190.92 100.16
£
= 10
e
)
< 1 2 3 4 5 6

Number of Particle Attributes Involved
Figure 4: Average query time across different dataset scales.
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Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

2. Large Memory Footprint.

o Loading large-scale particle data is infeasible due to memory limits. (red line)

o Batch loading with partial result merging (blue curve) reduces memory usage but still scans the entire dataset.

OpenPMD-viewer +Batch Processing
&  [System Memory Limit: 256 GiB |
@
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o
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(a) Memory footprint of existing analysis tools
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Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

3. 1/0 Inefficiency.

o Unnecessary Reads: Query latency remains constant even with varying selection proportions (left).

o Small I/O: Reorganizing 10k+ cells into 16 larger cells significantly reduces query time—up to 3 X faster (right).

0.01% ~ 0.10% W 1.00% EEN10.00% 10k Cells (Default) 16 Cells
% 150 ~150s i 300+ 270.23
[*]

2 2,
— =
. £ 102.2
S 50 S0 90.92 -
E 50 £ 100 69.27
p= o0 35.56
2 0 | | | %
< 1 2 3 0 1 2 3

Number of Particle Attributes Involved Number of Particle Attributes Involved

(a) Different Selection Proportions (b) Impact of I/O Block Size

LX)
. 0 %
..".-.._-

Ira A.Fulton Schools of
s % ASU-IDI ESU Engineering

— - Arizona State University




Insights

* Using indexes can help filter and selectively read target data efficiently.

* However, existing indexing mechanisms for PIC simulations face challenges:

1. Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2.  Online indexing adds 10—15% overhead to simulations, while post-simulation indexing requires

reading the entire dataset again—consuming extra resources.

3. Indexed results are often scattered, leading to small, fragmented I/O, which reduces efficiency.
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Research Objective

Design and develop a scalable and modular post-simulation indexing framework,
which indexes key attributes to speed up the queries and reduce resource

utilization for facilitating query operations on large-scale particle data.
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Challenges

1. Capability of Adapting to Various Analysis Tasks.

o Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2. Efficient Index Construction, Storage, and Migration.

o Online indexing adds 10—15% overhead to simulations, while post-simulation indexing requires reading the

entire dataset again—consuming extra resources. > Fastbit Min-Max R-Tree
g 9 8.78.7
3. Query Optimizations with Intelligent I/O Operation E%_ 5.9
. . E 3.1 2
Planning and Scheduling. B3 Tt 221 2.2
o0
<0 2 3

o Indexed results are often scattered, leading to small, fragmented 1/0, Number of Particle Attributes Involved

which reduces efficiency.
(b) Different Index Performance
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Legolndex Design

T e e e e e e e e e e e e e e e e e e e e e e e e  m m m —m — — ————

'LegoIndex Level 0]
|
(1) Modular for Various | |

|
Analysis Tasks | .. [oo-o QO Level 1 |
| SN . ~a Leveln|
L . IR E——— J
r——-------=-=-"-"-"-"""-"""-"""—"=-"—""-"—""-"—"-"—""""="""—""="—"""""—""7=-""7""7—— 1
: [Legolndex Assembler] : i [Dynamic Scanner] i
It |
|| Granularity Controller ! !
:. ] [Worker Thread] : : [ Legol\/[ask] : ® Query
| , ! ! Optimizations
. _ . . I
@ Efficient Index i Fine-Grained Sharding [Dlspatch Queue] : : [Particle il ter] i
: |
Constrrlcthn, Storage, : ) [Bulk Load Scanner] : : :
and Migration (Construction = ~—————7——"""" . Query
Storage
metaﬁ data.(ﬁ data.ﬁ co data.rﬁ LegoInde.q
metadata raw data index files

Figure 7: LEGOINDEX: structure and workflow overview.
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Legolndex Design

1. A Modular Indexing Framework

Various cell statistics can help analysis

However, indexing all possible statistics leads to:
* Longer construction time

* Increased storage and migration overhead

* Higher query load time

Cell p

min
median
max
_Process | con Analyze |
sum
std
Cell Attribute Table

X YV Z UXuyuz---

AUX

Cell
>

P
Analysis Result

Figure 9: Various cell statistics help analysis.
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Legolndex Design

1. A Modular Indexing Framework

Legolndex provide an index warehouse with pre-defined Statistics Metrics and Structures

[t allows users to customize:
* Indexing granularity (e.g., max-level-num, granularity conditions, etc.)

e Statistics metrics for each level

LegoIndex Wareh
¢ IndGX structure fOI‘ eaCh leVel ‘ User Pre-defined Jemm——- ,,___9_g_(_)____de ‘..A_]_a___e__f)_l}_s_e ............. .
xS Xy zZ-N [ N7

Configuration { min[_] A min [ [ T ] ‘: fTree EI Linear E
\ _ I 1 | 1 1
e.g., Granularity, \:_-_-_-_-::’ \":::::::::::" | E i: OCD Oi
Statistical Metrics, :’ x\\l l" Xy z oy A\ NN A Y
i min I pmmmmmmmmmmm—— N T N
Structures, etc. ime(rﬁ:; i ime dian E | If Bloom Filter H Bitmap ‘:
| max i I max ! ]‘ E sh!! by !
1 : 1 ] ! 11 I
4 Column SN Table__ g U__'___l_'__'__'__ n LTI

Statlstlcal Metrics i Structures
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Legolndex Design

1. A Modular Indexing Framework

By default, LegoIndex constructs only the top-level cells using a tree-based index.
* Users can customize configurations as needed.

* In future, utilizing predictive heuristics for automatic adaptive indexing.

- FF"F--"F"—-¥"- "V V__—-—_ -/ 1
: LegoIndex Warehouse ' eg, Tree, Table Cell Index Legolndex
User Pre-defined TR STTTTRTETION, | R W v « |
. TTN - ‘
Configuration g" min[_] 3! min [T T 1] I{Tree ¥ Linear || Level 0 i
. ~ d, \s - ! ! ! l i
e. Cranular Sronnzs oo 1 OCO Oj (€8 ROW LINCar [ Cell Index In-Cell Index |
atistical Metrics, [ X X ¥z N NS S N S AN |
S[rucfures’ etc. : min E ! min : : ll"_-_-_-__ ----- \\ pmmmmmm————— \‘ | . , Level 1 O © L@V@] ! ] - :
! median |_|1 'median P Bloom Filter I:‘ Bitmap | leg. Point, Bitmap ) |
1 Iy i) i ! : |
;] max Iy max il hash [} p, N |
P
=\ : ,= :\ }: : :\ ,E i\ AEEEEN :I i . In-Cell IndExj%)b 1. In-Cell Index In-Cell Index :
_______ .* . ~_______.___o : T —— [ ————— |
Statistical Metrics Structures :__ | _LEV_EI_ 0 CLLLTIG| - __L_e_vf] R i = L _efef a— |

Figure 8: Architecture and design overview of LEGOINDEX.

®e
. 0 «
p—==s

5=5 ASU-IDI PSU Enginssring

— = Arizona State University




Legolndex Design

2. Efficient Index Construction, Storage, and Migration

Loading the entire dataset 1s infeasible for large-scale data,

while loading data cell-by-cell incurs inefficient small I/Os.

LegoIndex introduces a Bulk Load Scanner thread to
* Loads data in large chunks

* Dispatches the data to lower-level workers for processing

Stor. age : Level 0 Execution Process #1

.}@@@ i (UM’DJI

Dispatch Queue Worker Threa

g —

ﬂl | [ Bulk Load Scanner
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Legolndex Design

2. Efficient Index Construction, Storage, and Migration

LegoIndex introduces
* Granularity Controller: Manages construction of the next-level index based on predefined rules
* Assembler: Integrates results from workers and builds the index

* Key-Value Mechanism: Links multiple index levels and simplifies storage and retrieval

Storage | Tevel 0 Execution Process #1 key: particle attribute
E T8 H H |:| 000 Cell Index value: index in binary
! w ana]yze
| | | Level 0

% : Bulk Load Scanner J Dispatch Queue Worker Thread | linked by

raw data if this cell requires in-cell index | Granularity | | “™94¢ key ke .
' ey: +cell id
: Controller Level 1 Level 1

E: é;v;]ll I:Ipam’tion I:II:II:II:I ( analyze, — | — oD---Ollos---o
meta | Fine-Grained Sharding Dispatch Queue WOerl‘ Thread /4 i : LegoIndex\

metadata ! .

LegoIndex Assembler index files

Figure 10: LEGOINDEX construction workflow.
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Legolndex Design
3. Query Optimizations with LegoIndex

Index results are scattered across the dataset.
* Directly fetching them leads to inefficient small I/Os.
LegoIndex introduces

* Dynamic Scanner: Groups nearby cells for efficient bulk reads or splits large cells into multiple I/Os

* Adjusts fetching strategies based on historical performance

* LegoMask: Filters out unrelated in-memory data to reduce processing overhead

pux group nearby cells or split large cells (0070007069
B new range  eoolnd @@@ [D - ]O&VE;"(;;?C;:;:;;& [LegoMask... 1lolafaf - - - lol1]1lol - - - 1101...J
\ nami nner , ~ Z AA
| é Q E g o o8O N touched celts (Y OTHTE refined data |---(J 09 -- (0 -- (PP -
Cell Periodically processing historical performance [Query Results J [ Default Particle-level Filter ]

Figure 11: LEGOINDEX intelligent I/O scheduling workflow.
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Evaluation Setup

Dataset: Generated using WarpX on the Perlmutter supercomputer at LBNL.
Dataset Sizes: 10GB, 100GB, and 1TB per iteration (~10k cells for all datasets)
Analysis Application: openPMD-viewer

Query Generator: Produces queries that select N% of the dataset based on attribute (e.g., momentum x and y).

Baseline:
* No Index: default openPMD-viewer without indexing
* Min-Max Index: openPMD-viewer with Min-Max indexing support

Metrics:
* Query execution time
* Memory usage

* Number of I/O operations
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Evaluation

Overall Query Performance (in logarithmic scale)
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(b) 100 GB Dataset - Medium Size Cells
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Evaluation

Query Performance at different selection proportions (10GB Dataset)

* Left: Increase in included particles and touched cells with higher selection rates
* Middle-left: LegoIndex and Min-Max significantly reduce query latency compared to no index
e  Middle-right: Min-Max I/O count along with the select proportion, LegoIndex reduce I/0O by dynamic

SCanner

* Right: LegoIndex achieves similar memory usage with better performance

Avg Included Particles Avg Touched Cells _ No Index Min-Max Index LegoIndex
N = 81
iy g 150 149.8 1503 150.5 150.0 150'1%"1 :501‘!4"9.6 E 40k - 39621 39621 39621 39621 39363251333936526188 2‘5 60 7.0 625
| : T 6l™ 5.7 5.8 5.7 5.60.55.9
og21 178 g 123.8 E 3ok 29464 2 6 o 75653
7952 = 100 100.3 z 23857 = 4.0 4.0
5345 g 67.8 S 20k 16034 24 3.33.1 33

2893 £ 5 =

= 501369 %”wk- 8680 2 2{ 1890
. . , . , . z 0 21 27 31 31 33 34 0 124 74 36 8 3 3 = 0 . , . ‘ . _
1% 10% 30% 350% 70% 90% 1% 10% 30% 50% 70% 90% 1% 10% 30% 50% 70% 90% 1% 10% 30% 350% 70% 90%

Figure 13: Query performance at different selection proportions (x-axis: selection proportions).
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Evaluation

Performance of Different LegoIndex Configurations

o Comparison: Default (one-tier) vs. Fine-tuned (two-tier)

(a) Query Average Latency (In-Memory)

One-Tier Two-Tier Small One-Tier Two-Tier Small
: @ = Two-Tier Median Two-Tier Large Two-Tier Median Two-Tier Large
(b) Index Cost Proportion (In-Memory) = 13 S
2 ' ~ 100, 953999 99.7 96.6
o 3' 2'7 172} 82 5 89-0
=] e : 70.7 77.3
— 2.0 2.1 @) : 64.8
QE) T 13 1.3 _g 501
= 1 0-80.70' 0.5 0.7 =
a0 ) , , | S N 0 0.
Z 0.01% 0.1% 1% < 0.01%  0.1% 1%
Different Select Proportions Different Select Proportions
(@) Query Average Cost (In-Memory). (b) LegoIndex Cost Proportion (In-Memory)

Figure 14: Query performance across LEGOINDEX granularity.
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Evaluation

Index Construction Performance

1. I/0O Time Elapsed: Larger scan sizes significantly reduce I/O time across all thread counts.
However, the benefits diminish as the batch size grows further.

2. CPU Time Elapsed: Increasing the number of threads reduces in-memory processing time, but the benefits
diminish as thread count grows

3. Total Time Elapsed: for the 10GB dataset, scanning100 to1,000 cells per batch (i.e., 100MB to 1GB) with 4

to 8 worker threads achieves the highest efficiency.

Scan 1 Cell Each Time Scan 10 Cells Each Time Scan 100 Cells Each Time I Scan 1k Cells Each Time I Scan 10k Cells Each Time
~~ — ~~
Z 1| 868 78B4 6981 6438 5933 5697 5535 SS0.1 = ok /223661 99965 so152 ;f’mk_ 212119 10783 9 57153
2 3 2502.7 13416 2 31455 19338
w W
2 109.7 109.8 1127 1097 100.7 o1. 806.0 2 1374.7
5 1001 80.8 90.1 91.3 5 3700 4274 134 6012 4752 3643'138.g 132322_5 5 4498 5164 8221 7100 5869 473 88914%3 07713(7)6 s
: 216.2
Q 8.9 9.0 8.8 9.1 8.9 9.1 8.9 8.9 2100 2100
E 10{ 40 41 40 41 40 40 40 40| & 5433 34 E 33 %h gg s B8 a0 a2 i
= = 2.2 2.9 3.2 = 6.3 0 4 4
= i.o 0 .'4.9 i.l i.9 i.o i.l 4.0 = 33O 3 i g | B 6 w52 3 P
- o sz L i 't Do diy | W

S . : : 2 ol NN WEs - : g o5 - ;

1 2 4 8 16 32 64 128 @) 1 2 16 32 128 = 1 16 32 64 128

(a) /O Time Elapsed (b) CPU Time Elapsed (c) Total Time Elapsed

Figure 15: Construction performance with varying scan sizes and worker thread numbers (x-axis: number of worker threads).
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Evaluation

Performance Improvement by I/O optimization

* 10GB Dataset — Small Cells:

Legolndex achieves up to 21.7x speedup by reducing small I/O overhead with its Dynamic Scanner.

 1TB Dataset — Large Cells:
Though the benefit of grouping diminishes, Legolndex still provides 10-20% improvement by

efficiently managing I/O. -y _

No 1/0 Optimizations /O Optimizations No IO Optimizations I/O Optimizations
3 16.3 el = @ =
Z1s 8k = 123.1 112.0 1152 1999 8k ©
2 115 kO S0 el M0k o
Ci0{ 912 < O 6K o3
1 e 4k 3 O a5
Dynamic Scanner adapts to dataset scale, = . mEEl — :
%ﬂ 42 73 2 1o 5 .%0 kg

cnsuring consistent performance gains. 0 1 2 3 0 1 2 3 0

Number of Particle Attributes Involved Number of Particle Attributes Involved
(a) 10 GB Dataset — Small Size Cells (b) 1TB Dataset — Large Size Cells
Figure 16: LEGOINDEX intelligent I/O scheduling.
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Evaluation

Other use cases — Approximate Visualization

On a 10GB dataset at iteration 300:
* No Index (left) plots all 40M particles in 23.1s

* Legolndex (right) visualizes using aggregated cell metadata in just 7.3s (3% faster)
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Momentum Z.
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Iteration=300 Iteration=300
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(a) Particle Overview and Selection (a) LegoIndex Approximate Visualization
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Evaluation

Other use cases — Particle Tracking
Figure 17(b): Tracking particles (10, 100, 1000) from a 10GB dataset

* No Index: Always scans all IDs — stable but mefficient

* Legolndex: Uses tree + Bloom filters for fast localization

* Up to 260x speedup when tracking 10 particles @ No Index LegoIndex
.
: : : 51.9 52.5 52.3
* Performance scales linearly with number of tracked particles 250—
=
* Best suited for selective tracking in scientific analysis =
251
=
= 12.4
o0 0.1 1.2
> 0 0. | .
< 10 100 1000

Tracking Particle Number

(b) Particle Tracking across Iterations
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Conclusion and Future Work

LegoIndex: A Scalable and Modular Indexing Framework for Efficient Analysis of Extreme-Scale Particle Data
o Scalable and Modular Indexing Framework
o Accelerates post-simulation index construction
o Enhances query performance with Dynamic I/O Scanner and LegoMask

o Supports particle visualization and tracking workflows

Next Steps:

o Broaden support beyond PIC to other scientific and simulation data types
o Add predictive heuristics and locality-aware strategies for automatic adaptive indexing

o Enable cluster-level parallel index construction and distributed querying
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Thank You!
QO&A st

Contact

Chang Guo (cguo5S1@asu.edu)

Zhichao Cao (Zhichao.Cao@asu.edu)
https://asu-1di.github.io/contact/
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