
ASU-IDI

LegoIndex: A Scalable and Modular Indexing Framework for
Efficient Analysis of Extreme-Scale Particle Data

Chang Guo1, Ning Yan2, Lipeng Wan2, Zhichao Cao1

Intelligent Data Infrastructure Lab (ASU-IDI)

1Arizona State University

2 Georgia State University

ASU-IDI

Background

• What is PIC Data?

◦ Particle-In-Cell (PIC) is a widely used simulation method in plasma physics and other scientific domains.

• Scale of PIC Simulations

◦ PIC simulations generate TB to PB data per hour.

• Popular Simulation Frameworks:

◦ WarpX, EPOCH, and Geant4.

• Common Analysis Tools:

◦ openPMD-viewer, ParaView, and H5py

2

ASU-IDI

Background

3

• How is PIC data stored on HPC clusters?

◦ PIC data is typically stored in column-based format to optimize output performance.

• However, this leads to inefficiencies in analysis:

◦ The entire cell must be scanned even targeting a few particles.

◦ Filtering by one attribute and retrieving another

results in scattered reads and high I/O overhead.

ASU-IDI

Background

• Workflows of Particle Data Analysis

◦ Overview Visualization — observe the global distribution of particles

◦ Particle Selection — perform range queries based on particle attributes

◦ Particle Tracking — follow selected particles across iterations

4

ASU-IDI

Motivation

5

• Existing analysis tools load the entire dataset into memory, leading to:

1. High Particle Query Latency on Large Datasets.

◦ A single query on a 1 TB dataset can take over an hour

◦ Re-reading the full dataset for each query is redundant and inefficient

ASU-IDI

Motivation

6

• Existing analysis tools load the entire dataset into memory, leading to:

2. Large Memory Footprint.

◦ Loading large-scale particle data is infeasible due to memory limits. (red line)

◦ Batch loading with partial result merging (blue curve) reduces memory usage but still scans the entire dataset.

ASU-IDI

Motivation

7

• Existing analysis tools load the entire dataset into memory, leading to:

3. I/O Inefficiency.

◦ Unnecessary Reads: Query latency remains constant even with varying selection proportions (left).

◦ Small I/O: Reorganizing 10k+ cells into 16 larger cells significantly reduces query time—up to 3× faster (right).

ASU-IDI

Insights

8

• Using indexes can help filter and selectively read target data efficiently.

• However, existing indexing mechanisms for PIC simulations face challenges:

1. Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2. Online indexing adds 10–15% overhead to simulations, while post-simulation indexing requires

reading the entire dataset again—consuming extra resources.

3. Indexed results are often scattered, leading to small, fragmented I/O, which reduces efficiency.

ASU-IDI

Research Objective

Design and develop a scalable and modular post-simulation indexing framework,

which indexes key attributes to speed up the queries and reduce resource

utilization for facilitating query operations on large-scale particle data.

9

ASU-IDI

Challenges

1. Capability of Adapting to Various Analysis Tasks.

◦ Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2. Efficient Index Construction, Storage, and Migration.

◦ Online indexing adds 10–15% overhead to simulations, while post-simulation indexing requires reading the

entire dataset again—consuming extra resources.

3. Query Optimizations with Intelligent I/O Operation

Planning and Scheduling.

◦ Indexed results are often scattered, leading to small, fragmented I/O,

which reduces efficiency.

10

ASU-IDI

LegoIndex Design

11

① Modular for Various

Analysis Tasks

② Efficient Index

Construction, Storage,

and Migration

③ Query

Optimizations

ASU-IDI

LegoIndex Design

12

1. A Modular Indexing Framework

Various cell statistics can help analysis

However, indexing all possible statistics leads to:

• Longer construction time

• Increased storage and migration overhead

• Higher query load time

ASU-IDI

LegoIndex Design

13

1. A Modular Indexing Framework

LegoIndex provide an index warehouse with pre-defined Statistics Metrics and Structures

It allows users to customize:

• Indexing granularity (e.g., max-level-num, granularity conditions, etc.)

• Statistics metrics for each level

• Index structure for each level

ASU-IDI

LegoIndex Design

14

1. A Modular Indexing Framework

By default, LegoIndex constructs only the top-level cells using a tree-based index.

• Users can customize configurations as needed.

• In future, utilizing predictive heuristics for automatic adaptive indexing.

ASU-IDI

LegoIndex Design

15

2. Efficient Index Construction, Storage, and Migration

Loading the entire dataset is infeasible for large-scale data,

 while loading data cell-by-cell incurs inefficient small I/Os.

LegoIndex introduces a Bulk Load Scanner thread to

• Loads data in large chunks

• Dispatches the data to lower-level workers for processing

ASU-IDI

LegoIndex Design

16

2. Efficient Index Construction, Storage, and Migration

LegoIndex introduces

• Granularity Controller: Manages construction of the next-level index based on predefined rules

• Assembler: Integrates results from workers and builds the index

• Key-Value Mechanism: Links multiple index levels and simplifies storage and retrieval

ASU-IDI

LegoIndex Design

17

3. Query Optimizations with LegoIndex

Index results are scattered across the dataset.

• Directly fetching them leads to inefficient small I/Os.

LegoIndex introduces

• Dynamic Scanner: Groups nearby cells for efficient bulk reads or splits large cells into multiple I/Os

• Adjusts fetching strategies based on historical performance

• LegoMask: Filters out unrelated in-memory data to reduce processing overhead

ASU-IDI

Evaluation Setup

18

Dataset: Generated using WarpX on the Perlmutter supercomputer at LBNL.

Dataset Sizes: 10GB, 100GB, and 1TB per iteration (~10k cells for all datasets)

Analysis Application: openPMD-viewer

Query Generator: Produces queries that select N% of the dataset based on attribute (e.g., momentum x and y).

Baseline:

• No Index: default openPMD-viewer without indexing

• Min-Max Index: openPMD-viewer with Min-Max indexing support

Metrics:

• Query execution time

• Memory usage

• Number of I/O operations

ASU-IDI

Evaluation

19

Overall Query Performance (in logarithmic scale)

ASU-IDI

Evaluation

20

Query Performance at different selection proportions (10GB Dataset)

• Left: Increase in included particles and touched cells with higher selection rates

• Middle-left: LegoIndex and Min-Max significantly reduce query latency compared to no index

• Middle-right: Min-Max I/O count along with the select proportion, LegoIndex reduce I/O by dynamic

scanner

• Right: LegoIndex achieves similar memory usage with better performance

ASU-IDI

Evaluation

21

Performance of Different LegoIndex Configurations

◦ Comparison: Default (one-tier) vs. Fine-tuned (two-tier)

(a) Query Average Latency (In-Memory)

(b) Index Cost Proportion (In-Memory)

ASU-IDI

Evaluation

22

Index Construction Performance

1. I/O Time Elapsed: Larger scan sizes significantly reduce I/O time across all thread counts.

However, the benefits diminish as the batch size grows further.

2. CPU Time Elapsed: Increasing the number of threads reduces in-memory processing time, but the benefits

diminish as thread count grows

3. Total Time Elapsed: for the 10GB dataset, scanning100 to1,000 cells per batch (i.e., 100MB to 1GB) with 4

to 8 worker threads achieves the highest efficiency.

(a) I/O Time Elapsed (b) CPU Time Elapsed (c) Total Time Elapsed

ASU-IDI

Evaluation

23

Performance Improvement by I/O optimization

• 10GB Dataset – Small Cells:

 LegoIndex achieves up to 21.7× speedup by reducing small I/O overhead with its Dynamic Scanner.

• 1TB Dataset – Large Cells:

 Though the benefit of grouping diminishes, LegoIndex still provides 10–20% improvement by

efficiently managing I/O.

 Dynamic Scanner adapts to dataset scale,

ensuring consistent performance gains.

ASU-IDI

Evaluation

24

Other use cases – Approximate Visualization

On a 10GB dataset at iteration 300:

• No Index (left) plots all 40M particles in 23.1s

• LegoIndex (right) visualizes using aggregated cell metadata in just 7.3s (3× faster)

ASU-IDI

Evaluation

25

Other use cases – Particle Tracking

Figure 17(b): Tracking particles (10, 100, 1000) from a 10GB dataset

• No Index: Always scans all IDs → stable but inefficient

• LegoIndex: Uses tree + Bloom filters for fast localization

• Up to 260× speedup when tracking 10 particles

• Performance scales linearly with number of tracked particles

• Best suited for selective tracking in scientific analysis

ASU-IDI

Conclusion and Future Work

LegoIndex: A Scalable and Modular Indexing Framework for Efficient Analysis of Extreme-Scale Particle Data

◦ Scalable and Modular Indexing Framework

◦ Accelerates post-simulation index construction

◦ Enhances query performance with Dynamic I/O Scanner and LegoMask

◦ Supports particle visualization and tracking workflows

Next Steps:

◦ Broaden support beyond PIC to other scientific and simulation data types

◦ Add predictive heuristics and locality-aware strategies for automatic adaptive indexing

◦ Enable cluster-level parallel index construction and distributed querying

26

27

Thank You!

Q & A
Contact

Chang Guo (cguo51@asu.edu)

Zhichao Cao (Zhichao.Cao@asu.edu)

https://asu-idi.github.io/contact/

ASU-IDI

https://asu-idi.github.io/contact/
https://asu-idi.github.io/contact/
https://asu-idi.github.io/contact/

	Slide 1: LegoIndex: A Scalable and Modular Indexing Framework for Efficient Analysis of Extreme-Scale Particle Data
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Insights
	Slide 9: Research Objective
	Slide 10: Challenges
	Slide 11: LegoIndex Design
	Slide 12: LegoIndex Design
	Slide 13: LegoIndex Design
	Slide 14: LegoIndex Design
	Slide 15: LegoIndex Design
	Slide 16: LegoIndex Design
	Slide 17: LegoIndex Design
	Slide 18: Evaluation Setup
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation
	Slide 22: Evaluation
	Slide 23: Evaluation
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Conclusion and Future Work
	Slide 27

