/

LegoIndex A Scalab'le etnd Modular Indexing Framework for
Efﬁole'nt Analyms of Extreme-Scale Particle Data

0
$, ‘ ; ' = , ’ ' (2] {
: © X : "
| CRlang Guol, Ning Yan?, Lipeng Wan2, Zhichao Cao!
- ;
i ° .
ORI Intelligent Data Infrastructure Lab (ASU-IDI)
VTR °
S °
NN S . '
N - 1Arizona State University
SN 2 Georgia State University
=5 ASU-IDI PSU Engineering

Background

e What is PIC Data?

o Particle-In-Cell (PIC) is a widely used simulation method in plasma physics and other scientific domains.

e Scale of PIC Simulations

o PIC simulations generate TB to PB data per hour. iteration 0 k—1I k k+1 n id| x|y | 2 [uxluyluz] .-
Timeline 1 1 I | | Particle-p-1
‘l‘ Partic'le—p—z
* Popular Simulation Frameworks: | S
H ®
e o
> WarpX, EPOCH, and Geant4. o |®
7 e——p @ Particle-q-1
7 @ @ L ;
; ® Particle-q-2
. @ (] ;
* Common Analysis Tools: / Cell p Particle-q-
o openPMD-viewer, ParaView, and H5py Simulation Space Particle-in-Cell Particle Attributes

Figure 1: Particle data organization in PIC simulations.

B —— Ira A.Fulton Schools of

J ASU-IDI ESi Engineering

— - Arizona State University

Background

e How 1s PIC data stored on HPC clusters?

o PIC data is typically stored in column-based format to optimize output performance.

* However, this leads to inefficiencies in analysis:

o The entire cell must be scanned even targeting a few particles.

(partitioned and simulated by m processes) (metadata files)

Filesystem Storage: data.(ﬂ data.ﬁ--- data.ﬁ--- data.nﬁ u meta |

. . (Column-based Storage) . .
results in scattered reads and high I/0 overhead. 8 | in each fite

o Filtering by one attribute and retrieving another

iteration 0 +-- k—1 k k+1--- n
| | | | |

l in each iteration

First organized by iterations: Time

id
Then organized by particle attributes: ll lx !y! é !uxiuyluzi

1 in each attribute
Last organized by

partitioned cell sequence:

Figure 2: Column-based storage of particle data on filesystem.

LX)
. 0 %
..".-.._-

‘qj_‘___‘ﬁ ASU-[D[‘ % Ira A.Fulton Schools of

Engineering

Arizona State University

- —

Background

* Workflows of Particle Data Analysis

o Overview Visualization — observe the global distribution of particles
o Particle Selection — perform range queries based on particle attributes

o Particle Tracking — follow selected particles across iterations

N 1 2 1

= E

= 01 =

a ao-

S S

E -1 E .

Iteration=300 Iteration=400
0 1 2 3 0 1 2 3 4
Position Z le=S Position Z le=S
(a) Particle Overview and Selection (b) Particle Tracking

Figure 3: Particle distribution, selection, and tracking.

i 029~ Ira A. Fulton Schools of
;J_—:,, ASU-IDI %Engmeerlng

Arizona State University

—1

Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

1. High Particle Query Latency on Large Datasets.

o A single query on a 1 TB dataset can take over an hour

o Re-reading the full dataset for each query is redundant and inefficient

@ 10 GB Dataset 100 GB Dataset I 1 TB Dataset
; 2013.90 2731.79 3466.07 3850.82
o 1k 1364.45 :
1 603.69 514.04
= 350.95 434.38
3 180.81000 159 200:27H 199.88 249.09 299.46
= 100 50.1190.92 100.16
£
= 10
e
)
< 1 2 3 4 5 6

Number of Particle Attributes Involved
Figure 4: Average query time across different dataset scales.

i 029~ Ira A. Fulton Schools of
. #’iﬁ ASU-IDI ESU Engineering

— - Arizona State University

Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

2. Large Memory Footprint.

o Loading large-scale particle data is infeasible due to memory limits. (red line)

o Batch loading with partial result merging (blue curve) reduces memory usage but still scans the entire dataset.

OpenPMD-viewer +Batch Processing
& [System Memory Limit: 256 GiB |
@
>, 200
o
(=]
=
Q
= 100
=]
2
= 0

0 300 600 900

Time (Seconds)

(a) Memory footprint of existing analysis tools

IraA. Ful_ton Schoo!s of
% Engineering

Arizona State University

Motivation

* Existing analysis tools load the entire dataset into memory, leading to:

3. 1/0 Inefficiency.

o Unnecessary Reads: Query latency remains constant even with varying selection proportions (left).

o Small I/O: Reorganizing 10k+ cells into 16 larger cells significantly reduces query time—up to 3 X faster (right).

0.01% ~ 0.10% W 1.00% EEN10.00% 10k Cells (Default) 16 Cells
% 150 ~150s i 300+ 270.23
[*]

2 2,
— =
. £ 102.2
S 50 S0 90.92 -
E 50 £ 100 69.27
p= o0 35.56
2 0 | | | %
< 1 2 3 0 1 2 3

Number of Particle Attributes Involved Number of Particle Attributes Involved

(a) Different Selection Proportions (b) Impact of I/O Block Size

LX)
. 0 %
..".-.._-

Ira A.Fulton Schools of
s % ASU-IDI ESU Engineering

— - Arizona State University

Insights

* Using indexes can help filter and selectively read target data efficiently.

* However, existing indexing mechanisms for PIC simulations face challenges:

1. Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2. Online indexing adds 10—15% overhead to simulations, while post-simulation indexing requires

reading the entire dataset again—consuming extra resources.

3. Indexed results are often scattered, leading to small, fragmented I/O, which reduces efficiency.

Ira A. Ful_ton Schoo!s of
% Engineering

Arizona State University

Research Objective

Design and develop a scalable and modular post-simulation indexing framework,
which indexes key attributes to speed up the queries and reduce resource

utilization for facilitating query operations on large-scale particle data.

% Ira A.Fulton Schools of
Engineering
Arizona State University

Challenges

1. Capability of Adapting to Various Analysis Tasks.

o Single-purpose indexes perform well for specific tasks but lack flexibility for diverse query patterns.

2. Efficient Index Construction, Storage, and Migration.

o Online indexing adds 10—15% overhead to simulations, while post-simulation indexing requires reading the

entire dataset again—consuming extra resources. > Fastbit Min-Max R-Tree
g 9 8.78.7
3. Query Optimizations with Intelligent I/O Operation E%_ 5.9
. . E 3.1 2
Planning and Scheduling. B3 Tt 221 2.2
o0
<0 2 3

o Indexed results are often scattered, leading to small, fragmented 1/0, Number of Particle Attributes Involved

which reduces efficiency.
(b) Different Index Performance

e IraA. Ful_ton Schoo!sof
2 % ASU-IDI ESU Engineering

— - Arizona State University

Legolndex Design

T e m m m —m — — ————

'LegoIndex Level 0]
|
(1) Modular for Various | |

|
Analysis Tasks | .. [oo-o QO Level 1 |
| SN . ~a Leveln|
L . IR E——— J
r——-------=-=-"-"-"-"""-"""-"""—"=-"—""-"—""-"—"-"—""""="""—""="—"""""—""7=-""7""7—— 1
: [Legolndex Assembler] : i [Dynamic Scanner] i
It |
|| Granularity Controller ! !
:.] [Worker Thread] : : [Legol\/[ask] : ® Query
| , ! ! Optimizations
. _ . . I
@ Efficient Index i Fine-Grained Sharding [Dlspatch Queue] : : [Particle il ter] i
: |
Constrrlcthn, Storage, :) [Bulk Load Scanner] : : :
and Migration (Construction = ~—————7——"""" . Query
Storage
metaﬁ data.(ﬁ data.ﬁ co data.rﬁ LegoInde.q
metadata raw data index files

Figure 7: LEGOINDEX: structure and workflow overview.

5= 5 ASU-IDI FSU Enginesring

— - Arizona State University

Legolndex Design

1. A Modular Indexing Framework

Various cell statistics can help analysis

However, indexing all possible statistics leads to:
* Longer construction time

* Increased storage and migration overhead

* Higher query load time

Cell p

min
median
max
_Process | con Analyze |
sum
std
Cell Attribute Table

X YV Z UXuyuz---

AUX

Cell
>

P
Analysis Result

Figure 9: Various cell statistics help analysis.

Ira A. Ful_ton Schools of
% Engineering

Arizona State University

Legolndex Design

1. A Modular Indexing Framework

Legolndex provide an index warehouse with pre-defined Statistics Metrics and Structures

[t allows users to customize:
* Indexing granularity (e.g., max-level-num, granularity conditions, etc.)

e Statistics metrics for each level

LegoIndex Wareh
¢ IndGX structure fOI‘ eaCh leVel ‘ User Pre-defined Jemm——- ,,___9_g_(_)____de ‘..A_]_a___e__f)_l}_s_e
xS Xy zZ-N [N7

Configuration { min[_] A min [[T] ‘: fTree EI Linear E
\ _ I 1 | 1 1
e.g., Granularity, \:_-_-_-_-::’ \":::::::::::" | E i: OCD Oi
Statistical Metrics, :’ x\\l l" Xy z oy A\ NN A Y
i min I pmmmmmmmmmmm—— N T N
Structures, etc. ime(rﬁ:; i ime dian E | If Bloom Filter H Bitmap ‘:
| max i I max !]‘ E sh!! by !
1 : 1] ! 11 I
4 Column SN Table__ g U__'___l_'__'__'__ n LTI

Statlstlcal Metrics i Structures

= o ASU-IDI BSU Engineering

= Arizona State University

Legolndex Design

1. A Modular Indexing Framework

By default, LegoIndex constructs only the top-level cells using a tree-based index.
* Users can customize configurations as needed.

* In future, utilizing predictive heuristics for automatic adaptive indexing.

- FF"F--"F"—-¥"- "V V__—-—_ -/ 1
: LegoIndex Warehouse ' eg, Tree, Table Cell Index Legolndex
User Pre-defined TR STTTTRTETION, | R W v « |
. TTN - ‘
Configuration g" min[_] 3! min [T T 1] I{Tree ¥ Linear || Level 0 i
. ~ d, \s - ! ! ! l i
e. Cranular Sronnzs oo 1 OCO Oj (€8 ROW LINCar [Cell Index In-Cell Index |
atistical Metrics, [X X ¥z N NS S N S AN |
S[rucfures’ etc. : min E ! min : : ll"_-_-_-__ ----- \\ pmmmmmm————— \‘ | . , Level 1 O © L@V@] !] - :
! median |_|1 'median P Bloom Filter I:‘ Bitmap | leg. Point, Bitmap) |
1 Iy i) i ! : |
;] max Iy max il hash [} p, N |
P
=\ : ,= :\ }: : :\ ,E i\ AEEEEN :I i . In-Cell IndExj%)b 1. In-Cell Index In-Cell Index :
_______ .* . ~_______.___o : T —— [————— |
Statistical Metrics Structures :__ | _LEV_EI_ 0 CLLLTIG| - __L_e_vf] R i = L _efef a— |

Figure 8: Architecture and design overview of LEGOINDEX.

®e
. 0 «
p—==s

5=5 ASU-IDI PSU Enginssring

— = Arizona State University

Legolndex Design

2. Efficient Index Construction, Storage, and Migration

Loading the entire dataset 1s infeasible for large-scale data,

while loading data cell-by-cell incurs inefficient small I/Os.

LegoIndex introduces a Bulk Load Scanner thread to
* Loads data in large chunks

* Dispatches the data to lower-level workers for processing

Stor. age : Level 0 Execution Process #1

.}@@@ i (UM’DJI

Dispatch Queue Worker Threa

g —

ﬂl | [Bulk Load Scanner

% Ira A.Fulton Schools of
Engineering
Arizona State University

Legolndex Design

2. Efficient Index Construction, Storage, and Migration

LegoIndex introduces
* Granularity Controller: Manages construction of the next-level index based on predefined rules
* Assembler: Integrates results from workers and builds the index

* Key-Value Mechanism: Links multiple index levels and simplifies storage and retrieval

Storage | Tevel 0 Execution Process #1 key: particle attribute
E T8 H H |:| 000 Cell Index value: index in binary
! w ana]yze
| | | Level 0

% : Bulk Load Scanner J Dispatch Queue Worker Thread | linked by

raw data if this cell requires in-cell index | Granularity | | “™94¢ key ke .
' ey: +cell id
: Controller Level 1 Level 1

E: é;v;]ll I:Ipam’tion I:II:II:II:I (analyze, — | — oD---Ollos---o
meta | Fine-Grained Sharding Dispatch Queue WOerl‘ Thread /4 i : LegoIndex\

metadata ! .

LegoIndex Assembler index files

Figure 10: LEGOINDEX construction workflow.

= o ASU-IDI BSU Engineering

Arizona State University

=

Legolndex Design
3. Query Optimizations with LegoIndex

Index results are scattered across the dataset.
* Directly fetching them leads to inefficient small I/Os.
LegoIndex introduces

* Dynamic Scanner: Groups nearby cells for efficient bulk reads or splits large cells into multiple I/Os

* Adjusts fetching strategies based on historical performance

* LegoMask: Filters out unrelated in-memory data to reduce processing overhead

pux group nearby cells or split large cells (0070007069
B new range eoolnd @@@ [D -]O&VE;"(;;?C;:;:;;& [LegoMask... 1lolafaf - - - lol1]1lol - - - 1101...J
\ nami nner , ~ Z AA
| é Q E g o o8O N touched celts (Y OTHTE refined data |---(J 09 -- (0 -- (PP -
Cell Periodically processing historical performance [Query Results J [Default Particle-level Filter]

Figure 11: LEGOINDEX intelligent I/O scheduling workflow.

Ira A. Ful_ton Schools of
% Engineering

Arizona State University

Evaluation Setup

Dataset: Generated using WarpX on the Perlmutter supercomputer at LBNL.
Dataset Sizes: 10GB, 100GB, and 1TB per iteration (~10k cells for all datasets)
Analysis Application: openPMD-viewer

Query Generator: Produces queries that select N% of the dataset based on attribute (e.g., momentum x and y).

Baseline:
* No Index: default openPMD-viewer without indexing
* Min-Max Index: openPMD-viewer with Min-Max indexing support

Metrics:
* Query execution time
* Memory usage

* Number of I/O operations

Ira A. Ful_ton Schools of
% Engineering

Arizona State University

Evaluation

Overall Query Performance (in logarithmic scale)

Avg Included Particles Avg Touched Cells
4308
2740 2559
358 21 70
= 1Kkj No Index Min-Max Index Legolndex
3 200.9 250.1 300.5
2 151.6 :
= 101.2
1001 514
= .
@
g 12.9 17.7
g 0 103
> 2.6 4.2
) : 22
0 . ~ 14 14y 12
3 sea14 39621 52828 66035 79242
= 13207 678
E 10k 4308 5480
z 1434
422
S 148 104
=100 69 68
Eﬂlﬁﬂ 24 . i
z
0 T
g 20 34
P 2.8 :
£ 2.1
< 2 1.7
=
= 1{ 08
% 0.20.2 0.20.3 0.40.4 o1
0 T ‘ 0 ~0~0 0l.l~0
1 2 3 4 5 p

B

=0 ASU-IDI

- —

Number of Particle Attributes Involved

(a) 10 GB Dataset — Small Size Cells

._
ol

=3
]

Avg Time Elapsed (s)
S
]

—
=
~ =

Avg I/0 Number
=
=

=

Used Memory (GB)

Avg Included Particles Avg Touched Cells

4099
1592 1762
128 195 76
No Index Min-Max Index Legolndex
434.4 514.0
1808 2703 350.9 3
90.9
29.3
19.8 179
10.0 103 161
39,6 43, 4y
39621 52828 66035 79242
13207 26414 -
4099 3183
673 852 1334 544 976 459
190 254 224
232.2
2074
164.4
134.0
91.9
479
11.3 9.2 14.3
44 5.2 76 L1, 10, 14,

Number of Particle Attributes Involved

(b) 100 GB Dataset - Medium Size Cells

Avg Time Elapsed (s)

o
=
-~

Avg I/O Number

B)

Used Memory (GB

—
=
~

o
=
=

)
=4
[

e

j—y
=

500

6359 Avg Included Particles Avg Touched Cells
2889 2229
194 26 1
No Index Min-Max Index Legolndex
13645 239 27318 34661 38508
603.7)
242.7 176.0 194.8
120.9 118.5 128.1
19.9
15.6
3.6
2.9 23,4
40698 54264 67830 81396
135666359 2-"'1325')":"1‘ 6686
2684 3832 4535
775 751
128 126 66 66
1307.4
10833 1194.7
942.9
614.9
2001608 g 1451 141,6
: 920 886 6960 0807 0404
1 2 3 4 5 6

Number of Particle Attributes Involved

(c) 1 TB Dataset - Large Size Cells

Fsi

Arizon

Ira A.Fulton Schools of
Engineering

a State University

Evaluation

Query Performance at different selection proportions (10GB Dataset)

* Left: Increase in included particles and touched cells with higher selection rates
* Middle-left: LegoIndex and Min-Max significantly reduce query latency compared to no index
e Middle-right: Min-Max I/O count along with the select proportion, LegoIndex reduce I/0O by dynamic

SCanner

* Right: LegoIndex achieves similar memory usage with better performance

Avg Included Particles Avg Touched Cells _ No Index Min-Max Index LegoIndex
N = 81
iy g 150 149.8 1503 150.5 150.0 150'1%"1 :501‘!4"9.6 E 40k - 39621 39621 39621 39621 39363251333936526188 2‘5 60 7.0 625
| : T 6l™ 5.7 5.8 5.7 5.60.55.9
og21 178 g 123.8 E 3ok 29464 2 6 o 75653
7952 = 100 100.3 z 23857 = 4.0 4.0
5345 g 67.8 S 20k 16034 24 3.33.1 33

2893 £ 5 =

= 501369 %”wk- 8680 2 2{ 1890
. . , . , . z 0 21 27 31 31 33 34 0 124 74 36 8 3 3 = 0 . , . ‘ . _
1% 10% 30% 350% 70% 90% 1% 10% 30% 50% 70% 90% 1% 10% 30% 50% 70% 90% 1% 10% 30% 350% 70% 90%

Figure 13: Query performance at different selection proportions (x-axis: selection proportions).

5= 5 ASU-IDI FSU Enginesring

— Arizona State University

Evaluation

Performance of Different LegoIndex Configurations

o Comparison: Default (one-tier) vs. Fine-tuned (two-tier)

(a) Query Average Latency (In-Memory)

One-Tier Two-Tier Small One-Tier Two-Tier Small
: @ = Two-Tier Median Two-Tier Large Two-Tier Median Two-Tier Large
(b) Index Cost Proportion (In-Memory) = 13 S
2 ' ~ 100, 953999 99.7 96.6
o 3' 2'7 172} 82 5 89-0
=] e : 70.7 77.3
— 2.0 2.1 @) : 64.8
QE) T 13 1.3 _g 501
= 1 0-80.70' 0.5 0.7 =
a0) , , | S N 0 0.
Z 0.01% 0.1% 1% < 0.01% 0.1% 1%
Different Select Proportions Different Select Proportions
(@) Query Average Cost (In-Memory). (b) LegoIndex Cost Proportion (In-Memory)

Figure 14: Query performance across LEGOINDEX granularity.

. 029 - Ira A.Fulton Schools of
p—==s g F
% Engineering

i % ASU-IDI
Arizona State University

- —

Evaluation

Index Construction Performance

1. I/0O Time Elapsed: Larger scan sizes significantly reduce I/O time across all thread counts.
However, the benefits diminish as the batch size grows further.

2. CPU Time Elapsed: Increasing the number of threads reduces in-memory processing time, but the benefits
diminish as thread count grows

3. Total Time Elapsed: for the 10GB dataset, scanning100 to1,000 cells per batch (i.e., 100MB to 1GB) with 4

to 8 worker threads achieves the highest efficiency.

Scan 1 Cell Each Time Scan 10 Cells Each Time Scan 100 Cells Each Time I Scan 1k Cells Each Time I Scan 10k Cells Each Time
~~ — ~~
Z 1| 868 78B4 6981 6438 5933 5697 5535 SS0.1 = ok /223661 99965 so152 ;f’mk_ 212119 10783 9 57153
2 3 2502.7 13416 2 31455 19338
w W
2 109.7 109.8 1127 1097 100.7 o1. 806.0 2 1374.7
5 1001 80.8 90.1 91.3 5 3700 4274 134 6012 4752 3643'138.g 132322_5 5 4498 5164 8221 7100 5869 473 88914%3 07713(7)6 s
: 216.2
Q 8.9 9.0 8.8 9.1 8.9 9.1 8.9 8.9 2100 2100
E 10{ 40 41 40 41 40 40 40 40| & 5433 34 E 33 %h gg s B8 a0 a2 i
= = 2.2 2.9 3.2 = 6.3 0 4 4
= i.o 0 .'4.9 i.l i.9 i.o i.l 4.0 = 33O 3 i g | B 6 w52 3 P
- o sz L i 't Do diy | W

S . : : 2 ol NN WEs - : g o5 - ;

1 2 4 8 16 32 64 128 @) 1 2 16 32 128 = 1 16 32 64 128

(a) /O Time Elapsed (b) CPU Time Elapsed (c) Total Time Elapsed

Figure 15: Construction performance with varying scan sizes and worker thread numbers (x-axis: number of worker threads).

= o ASU-IDI BSU Engineering

=-.. Arizona State University

Evaluation

Performance Improvement by I/O optimization

* 10GB Dataset — Small Cells:

Legolndex achieves up to 21.7x speedup by reducing small I/O overhead with its Dynamic Scanner.

 1TB Dataset — Large Cells:
Though the benefit of grouping diminishes, Legolndex still provides 10-20% improvement by

efficiently managing I/O. -y _

No 1/0 Optimizations /O Optimizations No IO Optimizations I/O Optimizations
3 16.3 el = @ =
Z1s 8k = 123.1 112.0 1152 1999 8k ©
2 115 kO S0 el M0k o
Ci0{ 912 < O 6K o3
1 e 4k 3 O a5
Dynamic Scanner adapts to dataset scale, = . mEEl — :
%ﬂ 42 73 2 1o 5 .%0 kg

cnsuring consistent performance gains. 0 1 2 3 0 1 2 3 0

Number of Particle Attributes Involved Number of Particle Attributes Involved
(a) 10 GB Dataset — Small Size Cells (b) 1TB Dataset — Large Size Cells
Figure 16: LEGOINDEX intelligent I/O scheduling.

. 02® ~ Ira A.Fulton Schools of
S iyl =
% Engineering

‘QJ ASU-IDI Arizona State University

- —

Evaluation

Other use cases — Approximate Visualization

On a 10GB dataset at iteration 300:
* No Index (left) plots all 40M particles in 23.1s

* Legolndex (right) visualizes using aggregated cell metadata in just 7.3s (3% faster)

[a—y
[y
1

Momentum Z
>

L
Momentum Z.
[—]

|
-y
1

Iteration=300 Iteration=300
0 1 2 3 0 1 2 3
Position Z le=S Position Z le=S
(a) Particle Overview and Selection (a) LegoIndex Approximate Visualization

IraA. Ful_ton Schoo!s of
% Engineering

Arizona State University

Evaluation

Other use cases — Particle Tracking
Figure 17(b): Tracking particles (10, 100, 1000) from a 10GB dataset

* No Index: Always scans all IDs — stable but mefficient

* Legolndex: Uses tree + Bloom filters for fast localization

* Up to 260x speedup when tracking 10 particles @ No Index LegoIndex
.
: : : 51.9 52.5 52.3
* Performance scales linearly with number of tracked particles 250—
=
* Best suited for selective tracking in scientific analysis =
251
=
= 12.4
o0 0.1 1.2
> 0 0. | .
< 10 100 1000

Tracking Particle Number

(b) Particle Tracking across Iterations

% Ira A. Ful_ton Schools of
Engineering

Arizona State University

Conclusion and Future Work

LegoIndex: A Scalable and Modular Indexing Framework for Efficient Analysis of Extreme-Scale Particle Data
o Scalable and Modular Indexing Framework
o Accelerates post-simulation index construction
o Enhances query performance with Dynamic I/O Scanner and LegoMask

o Supports particle visualization and tracking workflows

Next Steps:

o Broaden support beyond PIC to other scientific and simulation data types
o Add predictive heuristics and locality-aware strategies for automatic adaptive indexing

o Enable cluster-level parallel index construction and distributed querying

Ira A. Ful_ton Schoo!s of
% Engineering

Arizona State University

Thank You!
QO&A st

Contact

Chang Guo (cguo5S1@asu.edu)

Zhichao Cao (Zhichao.Cao@asu.edu)
https://asu-1di.github.io/contact/

https://asu-idi.github.io/contact/
https://asu-idi.github.io/contact/
https://asu-idi.github.io/contact/

	Slide 1: LegoIndex: A Scalable and Modular Indexing Framework for Efficient Analysis of Extreme-Scale Particle Data
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Insights
	Slide 9: Research Objective
	Slide 10: Challenges
	Slide 11: LegoIndex Design
	Slide 12: LegoIndex Design
	Slide 13: LegoIndex Design
	Slide 14: LegoIndex Design
	Slide 15: LegoIndex Design
	Slide 16: LegoIndex Design
	Slide 17: LegoIndex Design
	Slide 18: Evaluation Setup
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation
	Slide 22: Evaluation
	Slide 23: Evaluation
	Slide 24: Evaluation
	Slide 25: Evaluation
	Slide 26: Conclusion and Future Work
	Slide 27

