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Northwest  Chemistry

< The Challenge in Simulation in Computational

« Atomic simulations explore the potential energy surface (PES) of a molecule
 The PES relates atomic positions to a molecule’s potential energy
* Ab initio Molecular dynamics uses quantum methods (like Density

Functional Theory DFT) to calculate the PES “on the fly” at each step,
allowing accurate study of bond breaking/forming and reactive events.

 Current Limitations of DFT:
» computationally expensive
» Limited to nanosecond timescales
» High time complexity

Potential Energy

local minimum

global minimum

* The Solution:

Atomic Coordinates

= Machine Learning Interatomic Potentials (MLIPs)

= Faster alternatives to DFT calculations

= Map atomic environments to energies and forces

= Enable larger scale simulations

Meural
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* Molecules can be represented as geometric graphs.
* [In @ geometric graph:

* Nodes represent atoms embedded in 3D
Euclidean space with scalar attributes
(e.g. atom type) and geometric
attributes (e.g. position, velocity, or
forces).

« Edges are weighted by pairwise
distances

« Smoothed cutoff graph most often
applied
= Cutoff ¢ is a hyperparameter
* Improves computational efficiency

» Long-range connections can be used
Long-range connections Complete graph to model periodic boundary conditions

®
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3D point cloud Smoothed cutoff graph

“A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems.” (2023) arXiv:2312.07511
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* The potential energy of an isolated molecule remain the same no matter how the
molecule is rotated or translated in space -- > invariant to Euclidean
transformations.

* Rotating or translating the molecule will lead to an equivalent transformation of the
directional forces acting on each atom; atomic forces are equivariant to Euclidean

transformations. L 3 : O O
\ i 1 " i 2 . »
3D atomic ' . Y .
system J5 Permutation Jo 3D Rotation *3
w @\:\( 2 3 4 5 -
original Potential energy\f emdNvariant \[ eeVariant w
g . _ eR
o \- I P
- ,:" "
H ’ gk g 'J m
[H] H]
H|
[H] H]
=
¥
b

eR™" invariant

Atom types
c Rnxl

permute rows

"
EEE=BEE

.
P IS Rnxn R c ]R3X3

permute rows " rotate columns

3D coordinates
c Rnx.‘i

! I
reflection (inversion) reflection (mirroring)

“A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems.” (2023) arXiv:2312.07511




7 Representing the Features of an Atom in a

Pacific

Northwest  [Mlolecule
* In molecules, spherical harmonics:

= describe how electrons are arranged and behave
around atoms.

= define the angular part of electron orbitals—regions
where electrons are likely to be found.

* The shape of each atomic orbital is determined
by a corresponding spherical harmonic function.

(1Pl

» the “s” orbital is spherical (from the simplest Atoms [1]
spherical harmonic),

13 ”

= “p” orbitals are dumbbell-shaped, and
= “d” orbitals have more complex, multi-lobed shapes.

» Specified by 2 parameters:
= | (the "shape type" or "level of detall")
= m (the "orientation" or "positioning")

[1] Image courtesy: Tess Smidt https://docs.google.com/presentation/d/1Acz3Y xUlI-
pH80Nn4UOeHWktnnpjsisTXkiimP5ZGBNo4/edit?slide=id.g938c0ac37a_0 3097#slide=id.g938c0ac37a_0 3097
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 Spherical harmonics:
= express the angular features of atoms (directions, patterns, etc.).

* These features, organized as spherical tensors,
» systematically encode information about directions and symmetries.

* When the system is rotated, the Wigner D-matrix

* re-mixes the features in a way determined by the transformation law of spherical
harmonics.

* When two features (or patterns) need to be combined—such as when
considering interactions between two atoms—the Clebsch—Gordan
coefficients specify exactly how their spherical harmonic expansions must be
merged to form a new, valid angular feature.
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« Graph Neural Networks are suitable candidates as Surrogate model for MLIP.
* However, traditional GNNs are not well-suited for tasks mvolvmq qeometrlc

graphs. ﬁ: ==
* Need to adhere to the principles of physics.  * %2 * = 7

* Important notion: A symmetry of an object () A socol nework graph (generlly ith

many vertices and edges)

* is a transformation of that object that leaves it unchanged

« Group theory allows us to formally describe and analyze these
transformations. Equivariant GNNs apply these transformation internally to
make sure that the model learns how to adiust “parameters™ accordinalv

(b) An Ensemble of molecular graphs
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Aspect GNNs for large Graphs GNNs for Geometric/Molecular Graphs / COD
Input graph structure Single massive graph m / a
Node count Millions to billions Typically <1000 per graph / @)
Data distribution Usually a single connected graph that needs to be partitioned  Natural partitioning as each molecular graph is indepenfent. Q
across workers (partition vertices and edges) Each worker processes multiple graphs in parallel. 76 -9,_
Node features Typically scalar features only Mix of scalar (atom type) and geometric features / -
Symmetries Only permutation symmetry needs to be preserved Multlple symmetrles Permutatmn rotation, tmnslatlp!n C_B
Edge definition Fixed edges based on relationships : : : : e bt/ —
Key computations Graph partitioning, neighborhood sampling, feature caching g

Performance bottleneck Communication overhead of node features between workers
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MATERIALS PROJECT
" o

 Traditional Approach:

» Specialized models for specific chemical systems
for specific property prediction

= Limited transferability

 Foundation Models (Our Focus):
= Handle diverse chemical species _ A
= Capable of predicting diverse properties: force, e N,
energy, stress, .. * -
Enable zero-shot predictions
Support fine-tuning for specific applications
Challenge: Computational bottlenecks in training

“A foundation model for atomistic materials chemistry.” (2023) arXiv:2401.00096



~~  MACE Architecture

n Atom’s chemical graph ‘edge’
Pacific Overview
Northwest
NATIONAL LABORATORY
radial embedding Ylm’s (angular embedding)
‘Embedding’ ) 5 sin () Y™ (7)
How the model sees Jilrs) = \/;Tf“‘(’“)
the data Node embedding
- B =3 Wi
[ ] 4,k00 - z02zi
« MACE: Higher Order
lode fe n_node, | edge features (n_edge, 8) | | edge attributes (n_edge, (ell+1)*2)

Equivariant Message Passing
Neural Networks

» State-of-the-art Chemistry Intersotion

Pooling information

F OU n d ati O n M Od el (C F M ) from neighbours iintans = 20 Clma : ety (T
= Geometric Graph Neural Networks )

 Key Features:
» E(3)-equivariant (rotation and ‘Product’ [ZH ZZW]

Form powers of

translation invariant) fosures fortigher | I .

* Message passing between atoms |k =W+ Sl [
= Higher-order tensor operations

v

Nodefeature‘sr(n_node, ' :l readout I > e:ec:g; s
« Training Challenge: Efficient i ]| [
scaling to large datasets and ; ; :

m u Itl p I e G P U S repeat Interaction + product
MACE tutorial: https://colab.research.google.com/drive/1AIfJQETV_jZ0JQnV5M3FGWAM2SGCl2aU#scrollTo=uEf7_Of6_03A
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e Load Imbalance due to Data Distribution

“mer [ PESy
pa ol _ N
nois n=19
-
Observation 1: Using a fixed number of molecular graphs in n-1a L
o0 . . q . n - W
each mini-batch ignores the diversity in graph sizes that can ¢ T g . e ‘C..: )
= w gL, e T = = " -
lead to uneven sizes in mini-batches, impacting performance. - :5 J ABRAL ASS el A n=18
Based on the sparsity pattern in each graph, the total amount heg n=i1 p=12 n-12 —
of work in each mini-batch can also vary significantly. Con-
sequently, when the workload is distributed across multiple -:_-}:_. ey
GPUs, the GPU execution time can differ, with the slowest - ’_ :_:_:':r A
GPU (straggler) limiting overall performance. n=21 . : h "/
Y J‘-: + n=25
:_-'};-F‘;? & 5 & mi=23 : 'h'-
& | = ‘ bin dimension: TE
=2z 2, % %) 72 x 72 LT
v pm10 | (23+24425) n=24
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 The Load Balancing Problem:
» Chemical systems vary significantly in size (9-768 atoms)
= Uneven computational loads across GPUs
* Need balanced distribution for optimal performance

 Our Approach:

* Formulate as multi-objective bin packing problem with the following objectives:
v minimize the number of bins,
v while minimizing zero-padding memory in each bin (mini-batch), and

v’ the difference between the amount of space filled by molecular graphs in any two bins should be
minimal.

= |terative algorithm for practical solution
» Fast and effective load balancing

12
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When all bins full,
Fill the emptiest bin create more and pre-fill
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* Kernel Performance Optimization
* Problem: Computational bottlenecks in training

= Symmetric tensor contraction: core operation in MACE, NeuqIP, Allegro
v High computational intensity
v’ Critical for overall performance

lamgz

Tensor
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Observation 2: The existing approach doesn’t consider the Observation 3: Existing implementations in frameworks
sparsity of Clebsch-Gordan coefficients, leading to unneces- LT I AL Tl I RS e AT

by breaking them into many small separate kernel calls for
each combination of quantum numbers (1, m), leading to exces-

sive global memory access, poor GPU utilization, and frequent

sary computations in dense matrix multiplication, while ex-

ploiting these properties could significantly reduce storage
and computational requirements. small kernel launch overbead.
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 Key Computational Kernel:
= Symmetric Tensor Contraction - core operation in MACE, NequlP, Allegro
= High computational intensity
= Critical for overall performance

* Optimization Strategies:
= Kernel fusion:
v' keeping intermediate results in shared memory as long as possible

= Set of key rules that determine which combinations give non-zero CG coefficients.

v’ pre-compute all valid combinations, store only non-zero coefficients, and create lookup tables for
fast access

v Sparse multiplications focusing only on non-zero elements
= Vectorized loads through float4 operation
CUDA-based optimizations

v Warp-level operations

v' Butterfly exchange patterns using __ shfl xor sync()
v" Loop unrolling for better instruction scheduling

15
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« Dataset Characteristics:

= Size: 2.6M samples

= Diversity: 8 different chemical systems
v Water clusters (9-75 atoms)
v' Liquid water (768 atoms)
v Metals (CuNi)
v High-entropy alloys (HEA)
v" Transition metal dichalcogenides (TMD)
v’ Zeolites T S— T

+ Hardware: 740 40GB Nvidia A100 GPUs @ NERSC
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16
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Experimental Results: Strong Scaling

500
. I —— MACE
N \
g \ —— MACE + load balancer
\
E 400 5\ —— MACE + kernel optimization
A\
= \ —— MACE + load balancer + kernel optimization
\
S \
= \ w
300 \ 3 50 -
s a PN
o '\\ -.E-25 “\t‘:._‘_‘
.. . % b o
o Lo M NG QN 4%
< RN N # GPUs
8 \\\ \\"‘ \\\
Q_ ]00 \\\\ \.*h""--_k“ \.JH"“-
m ..__ \'\. H“""'-. ﬁ“"‘ﬁ.
- TT=a_ hat O T R
K e T ¢-me e TTIITmie—o_ [ 6x speedup ]
0 I S ey .='_".___"_"::.:'_-_—_-.-.%:_:_—_;.:.:-'m- — :.':a: ———— =E

Number of GPUs



7 Empirical Determination of Optimal Bin

Pacific

Northwest  Capacity and Mini-batch Size
/.
1000 e Small clusters (40 atoms)
e Big clusters (500 atoms)
£ 500
c
.0
=
0
O
X
L
100
50

5 10 50
Batch Size

ol




o

Pacific

Northwest  Conclusion

* Addressed critical scaling bottlenecks in chemistry foundation model training

= Molecular datasets exhibit extreme heterogeneity in terms of system sizes, atom types,
and sparsity patterns

» Requires careful data distribution to avoid load imbalance and straggler effects across
GPUs.

* Symmetric tensor contractions—high-cost operations central to equivariant GNNs
* Developed practical solutions for load balancing and kernel optimization
« Demonstrated substantial performance improvements (6x speedup).

20
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