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The Challenge in Simulation in Computational 
Chemistry

• Atomic simulations explore the potential energy surface (PES) of a molecule

• The PES relates atomic positions to a molecule’s potential energy

• Ab initio Molecular dynamics uses quantum methods (like Density 
Functional Theory DFT) to calculate the PES “on the fly” at each step, 
allowing accurate study of bond breaking/forming and reactive events.

• Current Limitations of DFT:

➢computationally expensive

➢Limited to nanosecond timescales

➢High time complexity

• The Solution:

▪ Machine Learning Interatomic Potentials (MLIPs)

▪ Faster alternatives to DFT calculations

▪ Map atomic environments to energies and forces

▪ Enable larger scale simulations



MLIP Input: Molecular Geometric Graphs

“A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems.” (2023) arXiv:2312.07511 

• Molecules can be represented as geometric graphs.

• In a geometric graph:
▪ Nodes represent atoms embedded in 3D 

Euclidean space with scalar attributes 
(e.g. atom type) and geometric 
attributes (e.g. position, velocity, or 
forces).

• Edges are weighted by pairwise 
distances

• Smoothed cutoff graph most often 
applied
▪ Cutoff c is a hyperparameter

▪ Improves computational efficiency

• Long-range connections can be used 
to model periodic boundary conditions
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Molecular properties

• The potential energy of an isolated molecule remain the same no matter how the 
molecule is rotated or translated in space -- > invariant to Euclidean 
transformations. 

• Rotating or translating the molecule will lead to an equivalent transformation of the 
directional forces acting on each atom; atomic forces are equivariant to Euclidean 
transformations.

“A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems.” (2023) arXiv:2312.07511 5
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Representing the Features of an Atom in a 
Molecule

• In molecules, spherical harmonics:

▪ describe how electrons are arranged and behave 
around atoms. 

▪ define the angular part of electron orbitals—regions 
where electrons are likely to be found.

• The shape of each atomic orbital is determined 
by a corresponding spherical harmonic function.
▪ the “s” orbital is spherical (from the simplest 

spherical harmonic), 

▪ “p” orbitals are dumbbell-shaped, and 

▪ “d” orbitals have more complex, multi-lobed shapes.

• Specified by 2 parameters:

▪  l (the "shape type" or "level of detail")

▪ m (the "orientation" or "positioning")

Atoms [1]

[1] Image courtesy: Tess Smidt https://docs.google.com/presentation/d/1Acz3YxUI-

pH80n4UOeHWktnnpjslsTXkilmP5ZGBNo4/edit?slide=id.g938c0ac37a_0_3097#slide=id.g938c0ac37a_0_3097
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Important Terminologies

• Spherical harmonics:

▪ express the angular features of atoms (directions, patterns, etc.).

• These features, organized as spherical tensors, 
▪ systematically encode information about directions and symmetries.

• When the system is rotated, the Wigner D-matrix
▪ re-mixes the features in a way determined by the transformation law of spherical 

harmonics.

• When two features (or patterns) need to be combined—such as when 
considering interactions between two atoms—the Clebsch–Gordan 
coefficients specify exactly how their spherical harmonic expansions must be 
merged to form a new, valid angular feature.
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Comparing GNNs for Massive Graphs and 
Geometric/molecular Graphs

• Graph Neural Networks are suitable candidates as Surrogate model for MLIP.

• However, traditional GNNs are not well-suited for tasks involving geometric 
graphs.

• Need to adhere to the principles of physics.

• Important notion: A symmetry of an object 

▪ is a transformation of that object that leaves it unchanged

• Group theory allows us to formally describe and analyze these 
transformations. Equivariant GNNs apply these transformation internally to 
make sure that the model learns how to adjust “parameters” accordingly 
without seeing all possible combination of the inputs.
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Chemistry Foundation Model

• Traditional Approach:

▪ Specialized models for specific chemical systems 
for specific property prediction

▪ Limited transferability

• Foundation Models (Our Focus):

▪ Handle diverse chemical species

▪ Capable of predicting diverse properties: force, 
energy, stress, ..

▪ Enable zero-shot predictions

▪ Support fine-tuning for specific applications

▪ Challenge: Computational bottlenecks in training

“A foundation model for atomistic materials chemistry.” (2023) arXiv:2401.00096
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MACE Architecture 
Overview

• MACE: Higher Order 
Equivariant Message Passing 
Neural Networks

▪ State-of-the-art Chemistry 
Foundation Model (CFM)

▪ Geometric Graph Neural Networks

• Key Features:

▪ E(3)-equivariant (rotation and 
translation invariant)

▪ Message passing between atoms

▪ Higher-order tensor operations

• Training Challenge: Efficient 
scaling to large datasets and 
multiple GPUs

MACE tutorial: https://colab.research.google.com/drive/1AlfjQETV_jZ0JQnV5M3FGwAM2SGCl2aU#scrollTo=uEf7_Of6_03A
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Challenges in Molecular GNN (1): Data Distribution

• Load Imbalance due to Data Distribution
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Data Distribution and Multi Objective Bin packing

• The Load Balancing Problem:

▪ Chemical systems vary significantly in size (9-768 atoms)

▪ Uneven computational loads across GPUs

▪ Need balanced distribution for optimal performance

• Our Approach:

▪ Formulate as multi-objective bin packing problem with the following objectives: 

✓ minimize the number of bins, 

✓ while minimizing zero-padding memory in each bin (mini-batch), and 

✓ the difference between the amount of space filled by molecular graphs in any two bins should be 
minimal.

▪ Iterative algorithm for practical solution

▪ Fast and effective load balancing
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Our Algorithm for Data Distribution

Atomistic Graphs

sorted by number of atoms

S.pop()

When all bins full, 

create more and pre-fill
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Challenges in Molecular GNN (2): Bottleneck in 
Computation

• Kernel Performance Optimization

▪ Problem: Computational bottlenecks in training

▪ Symmetric tensor contraction: core operation in MACE, NeuqIP, Allegro

✓ High computational intensity

✓ Critical for overall performance
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Optimization for Symmetric Tensor Contraction

• Key Computational Kernel:

▪ Symmetric Tensor Contraction - core operation in MACE, NequIP, Allegro 

▪ High computational intensity

▪ Critical for overall performance

• Optimization Strategies:

▪ Kernel fusion:

✓ keeping intermediate results in shared memory as long as possible

▪ Set of key rules that determine which combinations give non-zero CG coefficients.

✓ pre-compute all valid combinations, store only non-zero coefficients, and create lookup tables for 
fast access

✓ Sparse multiplications focusing only on non-zero elements

▪ Vectorized loads through float4 operation 

▪ CUDA-based optimizations

✓ Warp-level operations

✓ Butterfly exchange patterns using __shfl_xor_sync()

✓ Loop unrolling for better instruction scheduling
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Experimental Setup

• Dataset Characteristics:

▪ Size: 2.6M samples

▪ Diversity: 8 different chemical systems

✓ Water clusters (9-75 atoms)

✓ Liquid water (768 atoms)

✓ Metals (CuNi)

✓ High-entropy alloys (HEA)

✓ Transition metal dichalcogenides (TMD)

✓ Zeolites

• Hardware: 740 40GB Nvidia A100 GPUs @ NERSC
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Experimental Results: Ablation Study
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Experimental Results: Strong Scaling

6x speedup
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Empirical Determination of Optimal Bin
Capacity and Mini-batch Size
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Conclusion

• Addressed critical scaling bottlenecks in chemistry foundation model training

▪ Molecular datasets exhibit extreme heterogeneity in terms of system sizes, atom types, 
and sparsity patterns

▪ Requires careful data distribution to avoid load imbalance and straggler effects across 
GPUs.

▪ Symmetric tensor contractions—high-cost operations central to equivariant GNNs

• Developed practical solutions for load balancing and kernel optimization

• Demonstrated substantial performance improvements (6x speedup).



Thank you
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