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The Evolution of Transfer Learning

1996

Foundational Work: Tom
Mitchell's [1] "Machine

Learning"

transferability across diverse text tasks.

Early 2000s

Rain et. al introduced sparse coding-based
unsupervised pretraining for transfer learning.
Ben-Davis et.al provided VC-theory based
generalization bounds for domain adaptation —

foundational for theoretical transfer learning.

2018-2020
NLP Breakthroughs: BERT [3], GPT [4],
RoBERTa [5] and other transformer
models revolutionize natural language

processing, demonstrating immense

2023

Levin et. al proposed transfer learning
across tabular domains with feature mismatch
leveraging transfer learning requiring a feature

overlap between the domains.

2025
Tabular Data: Shourav B. Rabbani’s

"Transfer Learning of Tabular Data by
Finetuning Large Language Models"
pushes boundaries, extending transfer

learning to complex tabular datasets.

2025

ModelX: Transfer learning
across fully heterogeneous

domains (This work)
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application algorithm bw_level ipath_0 power_cap runtime thread_count

Data and structural . CoMD pak 54.4034
heterogeneity could be GoMU pak 46.5075

¢ CoMD pak 42.4216
caused by » e -y 5 41.7099

AvgInst Avglpc AvgArithFpu AvgFreq AvgTemp ProcessorPower DRAMPower ExecTime

31.572256 7 3. S0 6.829296e+10 3.7360  6.248262e+08 21110 34.2837 1390.4714 505.1561 7.6394
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Agenda

HPC scenarios & challenges
Methodology
Evaluations

Application of MedelX for job scheduling

Conclusions & Future work



Transfer Learning Scenarios in HPC are
Challenging Due to Heterogeneity

Challenges: <> SrOSS Kripke » CoMD on the same system
. . @3 Applications
¢ Domain divergence: Data

distribution shift across

homogeneous datasets "

. . ross
Data scarcity: Extensive data o—o Architectures CPU - GPU for the same application
collection is expensive HPC

Feature heterogeneity (different
names, counts, order of 2 Kripke on CPU - CoMD on GPU
features) 28
Manually Align
Features (Infeasible)
Rebuild Model Assume Common
How do handle domain divergence, (Expensive) Features (Limiting)

feature mismatch or disjoint feature
sets today?
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Performance Modeling Methodology using VL

Application
Data

Algorithm Data Training pipeline Inference pipeline

Test-Time

|
Compiler Data Adaptation

System Data &<

Performance

Modeling Source Model Adapted ModelX
Methodology

I/0 Data

For new scenario

Communication G2
Data

+ Assumption: All data sources during training are homogeneous.
+ No assumption during inference time.
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Current Test-Time Adaptation Approaches

Zero-shot prediction

Train a source model and use
it directly

LLNL-CFPRES-xxxxx



Current Test-Time Adaptation Approaches

Zero-shot prediction Linear probing (few-shot adaptation)

Train a source model and use Adapt of the
it directly source model using new
samples

Frozen layers Trainable layers
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Current Test-Time Adaptation Approaches

Zero-shot prediction Linear probing (few-shot adaptation)  Fine tuning (few-shot adaptation)

Train a source model and use Adapt of the Adapt of the source
it directly source model using new model using new samples
samples

Frozen layers  Trainable layers
1 1

I all E‘
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Proposed Solution: Bridging Heterogeneity
During Inference Time

[ el

R IIIITITITIILI NN
+  Introducing a novel approach for QLIIIITTITITTI LTI W o ) %
robust performance prediction across | . I 2
diverse domains. |l'[m“““""“" m'

During training: Source model building b= Training phase: Build a source model from
using homogeneous datasets one or more homogeneous source datasets

During inference:
+ Step 1: Train a feature extractor

network (M,) using new target few- Alignmen ,
shot samples using source model’s model ;
prediction loss G

Step 2: Use just the new target few-
shot samples to train an additional

residual model My Xeew shot
test

Feature
Extractor

ModelX

|

Inference phase: A few-shot test-time adaptation method that can learn from
new samples that may have disjoint features, data divergence
LLNL-CFPRES-xxxxx

Residual model
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Proposed Explainability Measure for Quantifying
the Divergence between Datasets

R ] EEEEE
Design a distance measure

to quantify the “difficulty”
of transferring knowledge PCA
between two datasets

mann Manifold

> Subspace 2

Subspace 1 0s
QY ©
Proxy
Subspace

This measure can explain
why SOTA does not work,

and when different BEREE

components of our solution

Number of principal components

d*
\;.5
severity = Z (65 +0%)

is necessary or sufficient

Distance between subspaces using
Grassmanian manifold

UNFINISHED
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ModelX Can be Use in both Online and Offline
Scenarios

Source Model Request to predict

-~
/ N\
'\ Update model using
iy new measurements ;
. —> =" — Prediction - e e Dynamic
- — New Environment
L | =- Measurements
Config.yaml ModelX ModelX ‘
Prediction
Scenario 1: ModelX can be used Scenario 2: ModelX can be used

during offline scenarios during online scenarios



App.

Example Features

HPC Datasets

Experimental Setup

Metrics

Datasets

Scenarios

11 HPC and 4 machine
learning datasets

CG, LU, FT,Kripkel,

CoMD, N=3180,
p=7

Power Cap, Task Count, Core Count, Placement, and Band-
width, runtime

Kripke2,
N=17386, p=23

DRAMPowerPerNode, ProcessorPowerPerNode, Ranks, App.
specific input parameters, OMP, PKG_LIMIT, DRAM_LIMIT,
Avglnst, Avglpc, AvgArithFpu, AvgFreq, AvgTemp, Proces-
sorPower, DRAMPower, Nesting Order, ExecTime

Mean Squared Error

Hypre, N=50396,
p=21

DRAMPowerPerNode, ProcessorPower-
PerNode, Ranks, OMP, PMX, NS, MU,
AvgIPC, Smoother, AvgTSC, AvgTemp,
ProcessorPower, DRAMPower, Solver-
related parameters, ExecTime

XSBench and
OpenMC on SB,

NumThread, InputSize, EfficiencyLoss,
perf:[MEM|DTLB|LLC]_[MISS|STALL],

N=200, p=121 perfi:[Lq |Lo |L3|]_[MISS|STALL]
XSBench and | NumThread, InputSize, Efficiency-
OpenMC on BGQ, | Loss, PEVT_[XU|AXU|L1P|STL]_[MISS|],
N=200, p=145 PAPI_[BR|STL[SYC])_[STALL|CYC|MISS]
ML Datasets
o Frequency, Angle of attack, Chord Iength,

Airfoil, : S

Free-stream velocity, Suction side, Scaled
N=1503, p=5

sound pressure level
NO2, N=500, NO2, Cars per hour, temperature, wind speed, temperature
p=8 difference, wind direction, hour of day, day number

Cross applications
Cross architectures

Crime, N=19%4,
p=127

population, householdsize, PctEmploy, Pctllleg,
medIncome, perCaplnc, PctPopUnderPov, Vio-
lentCrimesPerPop

Online job scheduling

LLNL-CFPRES-xxxxx

SkillCraft, N=3395,
p=16

GamelD, APM, SelectByHotkeys, AssignToHotkeys,
MinimapRightClicks, NumberOfPACs, ActionLa-
tency
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Mac{elx Improves Prediction Accuracy Across Applications 93.5%

Airfoil
CoMD, CG,FT

CoMD, FT.
Kripke[1]

CombD, CG,
Kripke[1]

Airfoil
Kripke[1]

CG

FT

Domain Divergence and Disjoint Features
Overhead: Average test time adaptation 45.83s, average inference time 0.78s per query

Number of features between 7 and 21
For heterogeneous cases, ModelX has been compared against a supervised model with 100x data

0.5

0.65

0.66

-82%
56%

69%

60%

Source
ModelX (Input
Alignment)
ModelX (Input
Alignment)

ModelX (Input
Alignment)

Source

Linear Probing

Linear Probing

Fine Tuning

—_

—Homogeneous
datasets

—Heterogeneous

LLNL-CFPRES-xxxxx
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ModelX Improves Prediction Accuracy by 77% Across

Architectures Compared to the Oracle using only 1-5% of
the data

B C E F G H J

[PEVT_XU_BR_MISPRED_CPEVT_LSU_ST_ PEVT_IU AXUPAPLINT_INS PEVT_LSU_LD_L# PEVT_INST_QFP PEVT_INST XU

363275749.5 0! 1.6723E+11 12205190201 11572 2449262430 25

|B |V| BGQ - ’I 43 featu res 181640446.8 6.625. 8.3415E+10 6102393911 35687.5 1224932300 0.75
121043941.1 0! 5.5493E+10 4065870710 18142.91667 816190208.8 0.166666667

9074777513 488.9375. 4.1512E+10 3048010431 3095.5625 611864963.6 0.125

73443709.1 542.3] 3.3557E+10 2438308036 4484274.3 489484843.8 0.1

61696261.88 860.5416667. 2.8135E+10 2032515138  6241053.542 408034358.4 0.083333333
53169009.32 1114.214286 2.4245E+10 1741726499  6890697.179 349656812.4 0.071428571

B € D E F G

MEM_LOAD_RETI PAPI_L2 TCA perf:INSTRUCTIONS perf::NODE-STORE perf::DTLB-STORE-M INSTS_WRITTEM

Intel Sandy Brldge - 121 features 2576408999 1577467923 24327658760 2 38137 103802174
1276757083 801386841 13069615784 5246383 10682.5 61142597
8529240263 535450194.3 8700837454  2671912.333 4611.666667 56508432.67
635040848.8 401738867.3 6521345416 2300212 2698 40303665.5
2

B ModelX m Retrain-few-shot Supervised

18 26x more d

Average Prediction Error
(Lower is better)

4
& M M
0
SB->BGQ BGQ->SB SB->BGQ BGQ->SB

severity=0.47 severity=0.46 severity=0.39 severity=0.53
OpenMC XSBench




ModelX Reduces Average Turnaround Time by
71%

= A. Generate
. . 1 *
Based on real-world job logs and Job Cfg. Exp. Q of jobs The Lassen job logs™ collected
performance measurement data

over 2.5 year
+ Extracted 70K jobs - 1-week’s

from 6 HPC proxy applications W B. Transform Enable job worth job
jobs transform? . s g
Assumption: Jobs can run with a l Use Iibe' S:)a,f'St'Cs (t’f tha;c
modified number of nodes than WeeK's Job 1o create a stream
requested C. FCFS+EASY of jobs
scheduling

Scheduler asks ModelX to predict
the execution time of a job using 80
lesser number of nodes = 1o @ No Model

£ ] —A— ModelX

g 60 *-~50% ATT

. " £ ] . +  25% ATT

3.4x time shorter turnaround time hat 256, 429 1 10% ATT

S 40

. 2 X *
The state-of-the-practice = 3.3x319 % 1530
. c / vé /
schedullng.method can perform as €204y v cos
good by using up to 55% more s N e/ o -
. 2 ' - XF S - X

nodes per job <, *- e A A |

256 512 768 1024 1280
Cluster size (Number of nodes)

Add lassen’s paper
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Summary
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