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The Evolution of Transfer Learning

1

1996

Foundational Work: Tom 

Mitchell's [1] "Machine 

Learning"

2

Early 2000s

3

2018-2020

NLP Breakthroughs: BERT [3], GPT [4], 

RoBERTa [5] and other transformer 

models revolutionize natural language 

processing, demonstrating immense 

transferability across diverse text tasks.
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2025

Tabular Data: Shourav B. Rabbani’s  [X] 

"Transfer Learning of Tabular Data by 

Finetuning Large Language Models" 

pushes boundaries, extending transfer 

learning to complex tabular datasets.

2025

ModelX: Transfer learning 

across fully heterogeneous 

domains (This work)

Rain et. al  introduced sparse coding-based 

unsupervised pretraining for transfer learning. 

Ben-Davis et.al  provided VC-theory based 

generalization bounds for domain adaptation —

foundational for theoretical transfer learning.

55 6

Levin et. al [X] proposed transfer learning 

across tabular domains with feature mismatch 

leveraging transfer learning requiring a feature 

overlap between the domains.

2023
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Where Transfer Learning Excels and Falters

Similar
Domains

Domain
Divergence

Abundant
Source Data

Data Scarcity

Feature
Overlap

Disjoint feature sets

Excels Falters

• Similar data distributions 
across datasets

• Need a lot of data for 
training supervised models

• Assumes overlap between 
feature names

SOTA cannot do it!
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Similar
Domains

Domain
Divergence

Abundant
Source Data

Data Scarcity

Feature
Overlap

Disjoint feature sets

Excels Falters

No one can do it!

CoMD on Intel Xeon E5-2695 v2

Kripke on Intel Xeon E5-2695 v2

Data and structural 
heterogeneity could be 
caused by 

• Similar data distributions 
across datasets

• Need a lot of data for 
training supervised models

• Assumes overlap between 
feature names
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Where Transfer Learning Excels and Falters



Agenda

Problem and motivation

HPC scenarios & challenges

Methodology

Evaluations

Application of ModelX for job scheduling

Conclusions & Future work
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Transfer Learning Scenarios in HPC are 
Challenging Due to Heterogeneity

Challenges:
• Domain divergence: Data 

distribution shift across 
homogeneous datasets

• Data scarcity: Extensive data 
collection is expensive

• Feature heterogeneity (different 
names, counts, order of 
features)

How do they handle domain divergence, 
feature mismatch or disjoint feature 
sets today?

Manually Align
Features (Infeasible)

Assume Common
Features (Limiting)

Rebuild Model
(Expensive)

Cross 
Applications

Cross
Architectures

HPC

Cross
Applications and
Architectures

Kripke → CoMD on the same system

CPU → GPU for the same application

Kripke on CPU → CoMD on GPU
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Performance Modeling Methodology using ML

Data 
Preprocessing

Modeling
Test-Time 
Adaptation

Training pipeline Inference pipeline

Source Model

Compiler Data

Performance
Modeling 

Methodology

Algorithm Data

System Data

Application
Data

I/O Data

Communication
Data

• Assumption: All data sources during training are homogeneous.
• No assumption during inference time.

Prediction

Adapted ModelX
For new scenario
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Current Test-Time Adaptation Approaches

Xtrain

Train a source model and use 
it directly

Zero-shot prediction

8
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Current Test-Time Adaptation Approaches

Xtrain

Train a source model and use 
it directly

Adapt a few layers of the 
source model using new 

samples

Linear probing (few-shot adaptation)Zero-shot prediction

Trainable layersFrozen layers

Xnew
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Current Test-Time Adaptation Approaches

Xtrain

Fine tuning (few-shot adaptation)

Train a source model and use 
it directly

Adapt a few layers of the 
source model using new 

samples

Adapt all layers of the source 
model using new samples

Linear probing (few-shot adaptation)Zero-shot prediction

Trainable layersFrozen layers

Xnew
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Proposed Solution: Bridging Heterogeneity 
During Inference Time

Xfew shot 

test Fe
at

ur
e 

Ex
tr

ac
to

r

Loss 

F

• Introducing a novel approach for 
robust performance prediction across 
diverse domains.

During training: Source model building 
using homogeneous datasets

During inference:
• Step 1: Train a feature extractor 

network (MA) using new target few-
shot samples using source model’s 
prediction loss

• Step 2: Use just the new target few-
shot samples to train an additional 
residual model MR

Training phase: Build a source model from 
one or more homogeneous source datasets

Inference phase: A few-shot test-time adaptation method that can learn from 
new samples that may have disjoint features, data divergence 

Alignment 
model

Residual model

ModelX
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• Design a distance measure 
to quantify the “difficulty” 
of transferring knowledge 
between two datasets

• This measure can explain 
why SOTA does not work, 
and when different 
components of our solution 
is necessary or sufficient

Distance between subspaces using 

Grassmanian manifold

Subspace 1
Subspace 2

Proposed Explainability Measure for Quantifying 
the Divergence between Datasets

PCA
Sinkhorn
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ModelX Can be Use in both Online and Offline 
Scenarios

X

Config.yaml

Source Model

ModelX

Scenario 1: ModelX can be used 
during offline scenarios

Prediction Dynamic 
Environment

Update model using 
new measurements

New 
Measurements

Request to predict

Prediction

ModelX

Scenario 2: ModelX can be used 
during online scenarios

13LLNL-CFPRES-xxxxx



Experimental Setup

Metrics

Datasets

Scenarios

Mean Squared Error

11 HPC and 4 machine 
learning datasets

Cross applications
Cross architectures

Online job scheduling
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ModelX Improves Prediction Accuracy Across Applications 93.5%

Source Target Severity Improvement Winner Best of Others

Airfoil Airfoil 0 -82% Source Source

CoMD, CG,FT Kripke[1] 0.5 56% ModelX (Input
Alignment)

Linear Probing

CoMD, FT. 
Kripke[1]

CG 0.65 69% ModelX (Input
Alignment)

Linear Probing

ComD, CG, 
Kripke[1]

FT 0.66 60% ModelX (Input
Alignment)

Fine Tuning

ComD, CG, LU, 
FT

Kripke[2] 0.60 95% ModelX (Residual 
augmentation)

X

Kripke[2] Hypre 0.70 99% ModelX (Residual 
augmentation)

X

Hypre Kripke[2] 0.70 99% ModelX (Residual 
augmentation)

X

• Domain Divergence and Disjoint Features
• Overhead: Average test time adaptation 45.83s, average inference time 0.78s per query
• Number of features between 7 and 21
• For heterogeneous cases, ModelX has been compared against a supervised model with 100x data

Homogeneous
datasets

Heterogeneous
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ModelX Improves Prediction Accuracy by 77% Across 
Architectures Compared to the Oracle using only 1-5% of 
the data

26x more data

LLNL-CFPRES-xxxxx

IBM BGQ – 143 features

Intel Sandy Bridge – 121 features
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ModelX Reduces Average Turnaround Time by 
71%

• Based on real-world job logs and 
performance measurement data 
from 6 HPC proxy applications

• Assumption: Jobs can run with a 
modified number of nodes than 
requested

• Scheduler asks ModelX to predict 
the execution time of a job using 
lesser number of nodes

• 3.4x time shorter turnaround time

• The state-of-the-practice 
scheduling method can perform as 
good by using up to 55% more 
nodes per job

LLNL-CFPRES-xxxxx 17

• The Lassen job logs* collected 
over 2.5 year

• Extracted 70K jobs → 1-week’s 
worth job

• Use the statistics of that 
week’s job to create a stream 
of jobs

Add lassen’s paper



Summary
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