

ModelX: A Novel Transfer Learning Approach Across Heterogeneous Datasets

Arunavo Dey¹, Neil Anthony³, Aakash Dhakal¹, Jayaram Thigarajan², Jae-Seung Yeom², Tapasya Patki², Tom Scogland², Tanzima Z. Islam¹

¹Texas State University

²Lawrence Livermore National Laboratory ³University of California Santa Barbara

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 24-SI-005 (LLNL-CFPRES-xxxxx).

The Evolution of Transfer Learning

Rain et. al introduced sparse coding-based unsupervised pretraining for transfer learning.

Ben-Davis et.al provided VC-theory based generalization bounds for domain adaptation — foundational for theoretical transfer learning.

Levin et. al [X] proposed transfer learning across tabular domains with feature mismatch leveraging transfer learning requiring a feature overlap between the domains.

ModelX: Transfer learning across fully heterogeneous domains (This work)

Agenda

Problem and motivation

HPC scenarios & challenges

Methodology

Evaluations

Application of ModelX for job scheduling

Conclusions & Future work

Challenges:

- Domain divergence: Data distribution shift across homogeneous datasets
- Data scarcity: Extensive data collection is expensive
- Feature heterogeneity (different names, counts, order of features)

How do they handle domain divergence, feature mismatch or disjoint feature sets today?

Transfer Learning Scenarios in HPC are Challenging Due to Heterogeneity

Performance Modeling Methodology using ML

- Assumption: All data sources during training are homogeneous.
- No assumption during inference time.

Current Test-Time Adaptation Approaches

Zero-shot prediction

Train a source model and use it directly

Current Test-Time Adaptation Approaches

Current Test-Time Adaptation Approaches

 Introducing a novel approach for robust performance prediction across diverse domains.

During training: Source model building using homogeneous datasets

During inference:

- Step 1: Train a feature extractor network (M_A) using new target fewshot samples using source model's prediction loss
- Step 2: Use just the new target fewshot samples to train an additional residual model $M_{\mbox{\scriptsize R}}$

Proposed Solution: Bridging Heterogeneity During Inference Time

Training phase: Build a source model from one or more homogeneous source datasets

11

LLNL-CFPRES-xxxxx

- Design a distance measure to quantify the "difficulty" of transferring knowledge between two datasets
- This measure can explain why SOTA does not work, and when different components of our solution is necessary or sufficient

Proposed Explainability Measure for Quantifying the Divergence between Datasets

UNFINISHED

Distance between subspaces using Grassmanian manifold

Model X Can be Use in both Online and Offline Scenarios

Scenario 1: ModelX can be used during offline scenarios

Scenario 2: Model X can be used during online scenarios

Experimental Setup

Metrics

Mean Squared Error

Datasets

11 HPC and 4 machine learning datasets

Scenarios

Cross applications Cross architectures Online job scheduling

App.	Example Features					
HPC Datasets						
CG, LU, FT, Kripke1, CoMD, N=3180, p=7	Power Cap, Task Count, Core Count, Placement, and Bandwidth, runtime					
Kripke2, N=17386, p=23	DRAMPowerPerNode, ProcessorPowerPerNode, Ranks, App. specific input parameters, OMP, PKG_LIMIT, DRAM_LIMIT, AvgInst, AvgIpc, AvgArithFpu, AvgFreq, AvgTemp, ProcessorPower, DRAMPower, Nesting Order, ExecTime					
Hypre, N=50396, p=21	AMPowerPerNode, ProcessorPower- Node, Ranks, OMP, PMX, NS, MU, gIPC, Smoother, AvgTSC, AvgTemp, ocessorPower, DRAMPower, Solver- ated parameters, ExecTime					
XSBench and OpenMC on SB, N=200, p=121	NumThread, InputSize, EfficiencyLoss, perf::[MEM DTLB LLC]_[MISS STALL], perf::[L ₁ L ₂ L ₃]_[MISS STALL]					
XSBench and OpenMC on BGQ, N=200, p=145	NumThread, InputSize, Efficiency- Loss, PEVT_[XU AXU L1P STL]_[MISS], PAPI_[BR STL SYC])_[STALL CYC MISS]					
	ML Datasets					
Airfoil, N=1503, p=5	Frequency, Angle of attack, Chord length, Free-stream velocity, Suction side, Scaled sound pressure level					
NO2, N=500, p=8	NO2, Cars per hour, temperature, wind speed, temperature difference, wind direction, hour of day, day number					
Crime, N=1994, p=127	population householdsize PctFmploy PctIlleg					
SkillCraft, N=3395, p=16	MinimapRightClicks, NumberOtPACs, ActionLa-					

ModelX Improves Prediction Accuracy Across Applications 93.5%

- Domain Divergence and Disjoint Features
- Overhead: Average test time adaptation 45.83s, average inference time 0.78s per query
- Number of features between 7 and 21
- For heterogeneous cases, ModelX has been compared against a supervised model with 100x data

So	ource	Target	Severity	Improvement	Winner	Best of Others		
Δ	Airfoil	Airfoil	0	-82%	Source	Source		
CoM	D, CG,FT	Kripke[1]	0.5	56%	ModelX (Input Alignment)	Linear Probing		
	MD, FT. pke[1]	CG	0.65	69%	ModelX (Input Alignment)	Linear Probing	Homogeneous datasets	
	nD, CG, pke[1]	FT	0.66	60%	ModelX (Input Alignment)	Fine Tuning	uatasets	
Com	O, CG, LU, FT	Kripke[2]	0.60	95%	MødุelX (Residual augmentation)	X		
Kri	pke[2]	Hypre	0.70	99%	ModelX (Residual augmentation)	Х	-Heterogeneous	
Н	lypre	Kripke[2]	0.70	99%	MødૄelX (Residual augmentation)	Х		

LLNL-CFPRES-xxxxx

UNFINISHED

ModelX Improves Prediction Accuracy by 77% Across Architectures Compared to the Oracle using only 1-5% of the data

IBM BGQ - 143 features

Intel Sandy Bridge - 121 features

В	С	E	F	G	Н	J
PEVT_XU_BR_MISPRED_0	PEVT_LSU_ST_	PEVT_IU_AXU	PAPI_INT_INS	PEVT_LSU_LD_LA	PEVT_INST_QFP	PEVT_INST_XU
363275749.5	0	1.6723E+11	12205190201	11572	2449262430	2.5
181640446.8	6.625	8.3415E+10	6102393911	35687.5	1224932300	0.75
121043941.1	0	5.5493E+10	4065870710	18142.91667	816190208.8	0.166666667
90747775.13	488.9375	4.1512E+10	3048010431	3095.5625	611864963.6	0.125
73443709.1	542.3	3.3557E+10	2438308036	4484274.3	489484843.8	0.1
61696261.88	860.5416667	2.8135E+10	2032515138	6241053.542	408034358.4	0.083333333
53169009.32	1114.214286	2.4245E+10	1741726499	6890697.179	349656812.4	0.071428571
В С		D	E		F	G

В		l D			G
MEM_LOAD_RETI	PAPI_L2_TCA	perf::INSTRUCTIONS	perf::NODE-STORE	perf::DTLB-STORE-M	INSTS_WRITTEN
2576406999	1577467923	24327658760	2	38137	103802174
1276757083	801386841	13069615784	5246383	10682.5	61142597
852924026.3	535450194.3	8700637454	2671912.333	4611.666667	56508432.67
635040848.8	401738887.3	6521345416	2300212	2898	40303665.5

RES-XXXXX 16

- Based on real-world job logs and performance measurement data from 6 HPC proxy applications
- Assumption: Jobs can run with a modified number of nodes than requested
- Scheduler asks Model% to predict the execution time of a job using lesser number of nodes
- 3.4x time shorter turnaround time
- The state-of-the-practice scheduling method can perform as good by using up to 55% more nodes per job

ModelX Reduces Average Turnaround Time by 71%

- The Lassen job logs* collected over 2.5 year
- Extracted 70K jobs → 1-week's worth job
- Use the statistics of that week's job to create a stream of jobs

Summary