
GPU I/O persistent kernel for latency bound systems
Michele Martinelli

INFN, Sezione di Roma "Sapienza", Italy

On behalf of NaNet collaboration team of Istituto Nazionale di Fisica Nucleare, Roma, Italy (R. Ammendola, A. Biagioni, P. Cretaro, O. Frezza, G. Lamanna, F. Lo Cicero, A. Lonardo,

P. S. Paolucci, E. Pastorelli, R. Piandani, L. Pontisso, D. Rossetti, F. Simula, M. Sozzi, P. Valente, P. Vicini)

In "hybrid" High Performance Computing (HPC) systems the defining feature is the chance of integrating different kind of processing units (CPUs, GPUs, FPGAs, etc.) on the same computational node.

In this kind of systems, a feature called "GPUDirect" allows a device on the PCIe bus to autonomously read/write data from/to the internal memory of an NVidia GPU device. This enables a PCIe Network Interface Card (NIC) to send
data over the network without the intervention of the host CPU, directly to a remote GPU memory and vice-versa.

In the standard network software stack the host CPU initiates the communication by triggering the NIC, typically using a kernel-space device driver, even when the data to be transferred resides on the GPU memory.

In this situation, a network stream undergoing a GPU processing stage (i.e. reading data from the network, processing them on the GPU and sending the results back over the network) requires iterating over CPU network receive -

GPU kernel launch - CPU network send; the incurring overhead of the CUDA kernel launch latency is glaring.

In our approach we envision the GPU driving the NIC by a "persistent" CUDA kernel performing both the network and processing tasks, and thus reducing the overall latency.

This same idea was also tested on the real-case scenario of the NA62 high energy physics experiment at CERN, where our custom NIC board NaNet is used.

Abstract

NaNet Design

NaNet-10 (four 10GbE SFP+ Ports)

• ALTERA Stratix V Terasic DE5-NET dev board.

• 4 SFP+ ports (Link speed up to 10 Gb/s).

• Implemented on Terasic DE5-NET board.

• GPUDirect P2P/RDMA capability.

• UDP offload supports.

• 40 GbE development.

NaNet Software stack – classical approach (HOST + GPUdirect)

Application

Library

Linux Kernel Driver

NaNet Device

User space

Kernel space

/dev/nanet

Rings pattern recognition and fit performed on GPU:

 Specific algorithm developed for trackless, fast, and high

resolution ring fitting.

 Detection of particle speed (radius) and direction (center).

 250 ns per event (on NVIDIA P100).

Case Study: CERN NA62 experiment
Design and implementation of a family of

FPGA-based PCIe Network Interface Cards :

 Bridging the front-end electronics and the

software trigger computing nodes.

 Supporting multiple link technologies and

network protocols.

 Enabling a low and stable communication

latency.

 Having a high bandwidth:

PCI Gen2:

CPU: 2.8 GB/s Read, 2.5 GB/s Write

GPU: 2.5 GB/s Read & Write

PCI Gen3:

CPU: 4.8 GB/s Read, 4.2 GB/s Write

GPU: 3 GB/s Write
 Processing data streams from the network

channels on the fly (data

compression/decompression, re-formatting ...).

 Optimizing data transfers with GPU

accelerators.

1) We simulate the arrival of new events by sending packets from the Ethernet interface

of the PC to the NaNet NIC, which writes the data into the memory of the GPU.

2) A dummy kernel is launched to simulate the reconstruction (∼200 μs).

3) Data are sent from NaNet to another Ethernet board to mimic progressing further

towards the NA62 trigger system.

In the plot, the classical approach to

control our NaNet NIC, based on a

kernel device driver is compared with a

persistent CUDA kernel in a synthetic

test that reproduce the NA62 CERN

experiment (gather data, process it and

then send over an Ethernet connection)

NaNet NIC DMA-writes data from the readout boards of the detector directly into the GPU memory

(through PCIe bus) using GPUdirect RDMA.

 NaNet NIC DMA-writes a “receiving done” event in a memory region called "event queue"
 trapped by a kernel-space device driver

 notified to the user application which launches a CUDA kernel to process the data using the GPU

(fast rings-reconstruction)

 Results of the processing – i.e. number and kind (electron, pion, kaon) of rings – is eventually sent via

NaNet board to the trigger system that collects data from all detectors:

 data are DMA-read directly from GPU memory

 the kernel device driver (invoked by the user application on HOST) instructs the NIC by filling a

“descriptor” into a dedicated, DMA-accessible memory region called “TX ring”
 the presence of new descriptors is notified to NaNet by writing on a doorbell register over PCIe

 NaNet NIC issues a “tx done” completion event in the “event queue”

Preliminary results

1. Remap in GPU memory both the TX ring (for the

sending phase) and the event queue (for both the

receiving and sending phase, in order to catch the

“completions”)
 p2p_get_pages() GPUDirect kernel API is used to

translate a virtual address into the correspondent

physical one.

2. The PCIe transactions must be as few as possible

 use a kernel-space device driver for the initialization

and remapping phase, we then mainly need to write

just the doorbell register in the sending phase.

The idea: a persistent CUDA kernel directly drive the NIC

Eliminate the latency due to the user ⇔ kernel space switch

by accessing the board directly from a persistent CUDA kernel

Save the overhead of launching the CUDA kernel every time a new bunch of events arrives

since the kernel is already running on the GPU

baseline of computation time

The experiment aims at measuring the branching ratio of the ultra-rare decay of the charged kaon

into a pion and a neutrino anti-neutrino pair.

Ring-Imaging Cherenkov (RICH) detector is used:

the particles generate a circular footprint radiation beam onto the light-sensitive tubes of two photo-

multipliers arrays. In the standard implementation, the FPGAs on the “readout boards” compute
simple “trigger primitives” on the fly, such as hit multiplicities and rough hit patterns, which are then
sent to a central processor for matching and trigger decision, with a time budget of 800 μs.

We then added a GPU-based processing stage between the RICH detector readout and the L0

trigger processor (L0TP) with the task of generating, in real-time, physics-related primitives (i.e.

centers and radii of Cerenkov ring patterns on the photomultipliers arrays), in order to boost the L0

trigger discrimination power.

PCIe X8 Gen2 core

Network

Interface

32bit Micro

Controller

Memory

Controller

Event Queue

DMA Controller

GPU I/O

Accelerator

O
n

 B
o

a
rd

M
e

m
o

ry

Router

I/
O

 I
n

te
rf

a
ce

Protocol

Manager

Data

Processing

APEnet Proto

Encoder

N
a

N
e

t-
1

 (
G

b
E

)

TSE

MAC

UDP

NaNet

TCL

K
M

3
li

n
k

Det.

Latency

TDM

NaNet

TCL

N
a

N
e

t-
1

0
 (

1
0

G
b

E
)10G

BASE-KR

UDP

NaNet

TCL

Physical Link

Coding

A
P

E
li

n
k

APElink

I/O IF

Word

Stuff

Link

Ctrl

N/A
Decom

pressor
N/A

Multi-Stream

Decompressor

RX Block

TLB

BSRC V2P

RX DMA

Controller

TX Block

T
X

 D
M

A

C
o

n
tro

lle
r 1

T
X

 D
M

A

C
o

n
tro

lle
r 2

User space

(application)
kernel space

NaNet

3. Send the

processed data

1. wait

new event

Event list (FIFO)

...

RX EVENT LIST

TX RING

TX DONE

CERN NA62

RICH DETECTOR

Data output

RX DONE
RX

BLOCK

TX

BLOCK

2. launch the GPU

kernel and wait for

the end of the

computation

ACK

DMA write

Processed data

CLOP

(RX buffers)

GPU

kernel

4. wait the end of

the tx phase

GPU

memory

GPU driver

NaNet driver

DMA read
NaNet driver

NaNet

User space

(GPU KERNEL)

NaNet

3. Send the

processed data

1. wait

new event

RX EVENT LIST

TX RING

TX DONE

CERN NA62

RICH DETECTOR

Data output

RX DONE
RX

BLOCK

TX

BLOCK

2. compute

DMA write

Processed data

CLOP

(RX buffers)

4. wait the end

of the tx phase

GPU

memory

DMA readNaNet

Contacts:

The NaNet project: http://apegate.roma1.infn.it/nanet

Presenter Contact: michele.martinelli@roma1.infn.it

NaNet project coordinator: alessandro.lonardo@roma1.infn.it

NaNet is an INFN Scientific Committee 5 funded experiment.

This work was carried out within the ExaNeSt project, under grant agreement EU H2020 FP No 671553.

Beam

Beam Pipe

Mirror Mosaic

2 spots with 1000x
18mm diameter
photo-detectors
each

READ

OUT

10 Gb

2
0

2
4

 T
D

C
 c

h
a

n
n

e
ls

4
 T

E
L6

2

TEL62

GPU I/O persistent kernel for latency bound systems

Michele Martinelli

INFN, Sezione di Roma "Sapienza", Italy. On behalf of NaNet collaboration team. email: michele.martinelli@roma1.infn.it.
PhD student.

ACM Reference format:

Michele Martinelli. 2017. GPU I/O persistent kernel for latency

bound systems. In Proceedings of ACM Conference, Washington, DC,

USA, July 2017 (Conference’17), 2 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In “hybrid” High Performance Computing (HPC) systems,
the defining feature is the chance of integrating different
kind of processing units (CPUs, GPUs, etc.) on the same
footing. In this kind of systems, a feature called “GPUDirect”
allows a device on the PCIe bus to autonomously read/write
data from/to an NVidia GPU memory. If this PCIe device is a
Network Interface Card (NIC) the data can be sent over the
network directly to a remote GPU memory and vice-versa.
One of the bottlenecks in such systems is the need of

the host CPU to initiate the communication by triggering
the NIC, commonly using a kernel-space device driver, even
when the data to be transferred resides on the GPU memory.

One possible solution envisions the GPU itself driving the
NIC, relieving the host CPUs from this task and speeding up
the process of receiving, processing and sending data.

Disappointingly, this approach has been demonstrated to
yield no advantage in communication bandwidth and latency
on a setup equipped with an InfiniBand NIC (see [2]).

In the following, we perform similar investigation on the
advantages of a GPU-driven NIC within a different environ-
ment, peculiar because latency-bound: Data Acquisition Sys-
tems (DAQs). This same idea was also tested on the real-case
scenario of a physics experiment with encouraging results.

NaNet is an INFN Scientific Committee 5 funded experiment. This work was

carried out within the ExaNeSt project, under grant agreement EU H2020

FP No 671553.
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

2 NANET PROJECT

NaNet [1] is a custom modular design for a FPGA-based fam-
ily of PCIe NICs, with RDMA-style paradigm and supporting
GPUDirect, specialized for real-time, low-latency operation.

The I/O interface is a highly flexible design that has been
tailored to implement different kind (and number) of chan-
nels to meet the diverse requirements of the High Energy
Physics experiments adopting NaNet for the data transport
in their DAQs and Trigger systems.

NaNet-10 (the multi-port 10 GbE version of NaNet) is cur-
rently employed in the CERN NA62 experiment, which aims
at measuring the branching ratio of the ultra-rare decay of
the charged kaon into a pion and a neutrino anti-neutrino
pair. Without delving too deep into the details of the experi-
ment, in NA62 a stream of physics events at a 10MHz rate has
to be decimated to 1 MHz before it is passed to subsequent
stages. In order to do this, a cascade of detectors is used;
we have focused our work on the Ring-Imaging Cherenkov
(RICH) detector. In this particular detector, the particles gen-
erate a radiation beam that impinges with a circular footprint
onto the light-sensitive tubes of a photo-multipliers array.
Using the information of this “rings” (radius, number of rings,
etc.) we can infer what kind of particles have passed through
the detector.
So, the problem translates to identifying ring patterns in

a cloud of points, that is well suited for a GPU.
In the setup of the NA62 experiment, incoming data are

DMA-copied into the GPU memory through the PCIe bus by
the NaNet NIC which is directly connected to the readout
boards of the detector. When data land in GPU memory, the
NIC DMA-write a “Receiving done” completion event in a
memory region called "event queue", where is trapped by a
kernel-space device driver that is in charge of notifying it to
the user application, which in turn launches a CUDA kernel
to process the data using the GPU.
This CUDA kernel implements an algorithm performing

fast rings-reconstruction. Results of this processing, i.e. num-
ber and kind (electron, pion, kaon) of rings, is eventually sent
via NaNet board to a FPGA performing the first stage trigger,
collecting data from all detectors. The whole process, from
data receive in NaNet to results delivered to the FPGA trigger
system, has to be completed strictly within 1 ms to avoid
data loss.

Conference’17, July 2017, Washington, DC, USA Michele Martinelli

In the transmission phase, data is to be pulled directly from
GPU memory, with the kernel device driver (invoked by the
user application) instructing the NIC by filling a “descriptor”
with all the relevant information for the transfer (destination
IP address, source data memory address, etc.), then dropping
it into a dedicated, DMA-accessible memory region called
“TX ring”. The presence of new descriptors is notified to
NaNet by writing on a doorbell register over PCIe bus.
After the sending phase, where data to be transferred is

actually DMA-read by the NaNet NIC, this latter issues a
“tx done” completion event, which is pushed into the “event
queue”, where the kernel-space driver acknowledges it.

As can be seen, the software stack is continuously switch-
ing between user-space and kernel-space in either the re-
ceive and the sending phase.

3 THE SOFTWARE: GPU-CONTROLLED NIC

Our idea is to have a “persistent” CUDA kernel to handle
ingress of data, their processing and then egressing the re-
sults away without intervention of the host CPU.
To this end, we need to remap in GPU memory both the

“TX ring” (for the sending phase) and the “event queue” (for
both the receiving and sending phase, in order to catch the
completions) to access them directly from the GPU process.
Notice that standard behaviour for a PCIe device driver

should be allocating I/O memory via the pci_alloc_coherent()
function which returns physically contiguous memory; mem-
ory of this kind should be remapped by the cudaHostRegister()
CUDA API with the cudaHostRegisterIoMemory flag, but the
disadvantage of this approach is that it increases the total la-
tency due to the need of accessing the host memory through
the PCIe bus.

Sowe proceed the otherway round, by allocating sufficient
GPUmemory via cudaMalloc() and then translating its virtual
memory address into the corresponding physical one via
p2p_get_pages() GPUDirect kernel API; this physical address
can be used directly by the NaNet DMA engines. With this
approach, we are able to map both the “TX ring” and the
“event queue” in GPU memory to access them directly from
a CUDA kernel.

Another important aspect is represented by the PCIe trans-
actions: as a PCIe device, NaNet is mainly driven through
accessing memory-mapped registers. Even taking advantage
of the aforementioned cudaHostRegister CUDAAPI to handle
I/O memory from inside a CUDA Kernel, the PCIe memory
read/write operations are still time consuming. Therefore,
we strove to keep the PCIe transactions to as few as possible.
We decided to use a kernel-space device driver for the first
initialization and remapping phase, we then mainly need to
write just the doorbell register in the sending phase to inform
the NIC about the presence of fresh data to move.

4 PRELIMINARY RESULTS

The test-bed is composed by a SuperMicro server equipped
with Intel Xeon E5-2630 CPUs, a NaNet NIC and an NVidia
K20x GPU. We simulate the arrival of new events by sending
packets from the Ethernet interface directly to the NaNet
NIC, which writes the data into the memory of the GPU, then
a dummy kernel is launched to simulate the rings search
(∼200µs) and, finally, data are sent from NaNet to another
Ethernet board to mimic progressing further towards the
NA62 FPGA trigger.
Using the idea presented in this paper, i.e. a persistent

CUDA kernel to directly drive the NIC (at the moment no
further improvements are made, just a single thread is used),
we reap benefits on two different sides:

• we eliminate the latency due to the user ⇔ kernel
space switch by accessing the board directly from
the persistent CUDA kernel;

• we save the overhead of launching the CUDA kernel
every time a new bunch of events arrives since the
kernel is already running on the GPU.

The preliminary result in terms of total latency (adding
up receive, compute and sending phases) are shown in the
plot 1, where the old approach is compared with the new
“kernel-persistent” one.

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000

Ti
m

e (
us

)

Iteration

Synthetic test - total latency

Classical approach
Persistent CUDA kernel approach
Computational baseline

Figure 1: Preliminary performance results in terms of to-

tal latency: the classical approach to control our NaNet NIC,

based on a kernel device driver, is compared with a persis-

tent CUDA kernel in a synthetic test that reproduce the

NA62 CERN experiment flow (gather data, process it and

then send over an ethernet connection). Notice that the plot

starts at 200µs to highlight the baseline of computation time.

REFERENCES

[1] R. Ammendola et al. 2016. NaNet-10: a 10GbE network interface

card for the GPU-based low-level trigger of the NA62 RICH detector.

Journal of Instrumentation 11, 03 (2016), C03030.

[2] L. Oden, H. Froning, and F.-J. Pfreundt. 2014. Infiniband-Verbs on

GPU: A Case Study of Controlling an Infiniband Network Device from

the GPU. In IPDPS Workshop, 2014 IEEE International. 976–983.

	1 Introduction
	2 NaNet project
	3 The Software: GPU-controlled NIC
	4 Preliminary results
	References

