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ABSTRACT 

As HPC systems grow dramatically in both scale and 

complexity, the sheer volume of syslogs and complicated 

interactions between system components make traditional 

manual diagnosis and even automated line-by-line analysis 

infeasible or ineffective. In this paper, we propose a System 

Log Event Block Detection (SLEBD) approach that can 

extract groups of log lines that appear following similar 

sequences and explore these event blocks for event analysis 

and prediction. Compared with the existing methods that 

analyze syslogs line by line, SLEBD is capable of 

characterizing system behavior and identifying intricate 

anomalies at a higher level. We evaluate the performance of 

SLEBD using syslogs from production HPC systems. 

Experimental results show that SLEBD can process 

streaming messages, which enables system operators and 

other tools to understand and process events in real-time. 

1. INTRODUCTION 

System logs provide a valuable resource for understanding 

system behavior and detecting anomalies on HPC systems. 

A number of methods and tools have been proposed and 

developed for log analysis. Existing approaches based on 

line-by-line log analysis can discover distribution and 

precedence relation between log lines. However, log 

messages are not isolated. A single event of a component or 

system may generate multiple messages. Analysis at the 

event level can provide a richer semantics of system 

behaviors and thus detect more subtle anomalies that the 

traditional line-by-line analysis methods cannot find.  

We use event block (EB) to refer to the log messages 

that belong to a component or system event. The advantages 

of event block based log analysis are clear. By converting 

the original, lengthy and unstructured messages in syslogs 

into a compact and structured list of EBs, the complexity of 

log analysis can be significantly reduced. By working at the 

EB level, we can find the patterns of events, the evolution of 

system behavior, and the interactions between different 

system components. Variation among instances of the same 

event is also an indicator of possible anomalies. 

In this paper, we present a System Log Event Block 

Detection (SLEBD) approach that extracts event blocks 

accurately and automatically. User only need to provide a 

system log format pattern to indicate time stamp, node id 

and log message. Then SLEBD can work on such format of 

HPC system log. LEBD leverages the law of total 

probability [1] to identify EBs from syslogs. The identified 

EBs are stored in an event block database (EBD). SLEBD is 

capable of processing streaming messages and analyzing 

system events and behavior in real time. We can do anomaly 

detection by comparing future system behavior and learned 

behavior model.  

2. SYSTEM LOG PROCESSING 

On large-scale HPC systems, messages from compute 

nodes and service nodes are often mixed together. We 

separate log messages into multiple files based on node IDs. 

Some events may produce multiple lines of messages, 

but only show up once in a time period on one node. 

Moreover, multiple messages may come together in a time 

period on one node. However, they do not show up together 

in log files of other nodes. We merge them into one EB if 

only the log file of that node is considered. We call it a false-

merged EB.  

Thus, the separated files from different nodes are 

sequentially merge into a single file. This helps us identify 

those EBs whose sets of messages appear on multiple nodes 

and reduce the possibility of producing false-merged EBs.  
 

3. EVENT BLOCK DETECTION METHOD  

Using the processed log files as input, SLEBD performs in 

two steps: 1) building EBD from the processed log files, and 

2) extracting an EB list from the log message stream.  

3.1 Event Block Database Generation 

3.1.1 Line Pattern Creation 

Log messages for the same system events are generated by 

similar threads or devices. They have similar message 

pattern in syslogs. For example: 
ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-fe]) 
ACPI: PCI Root Bridge [UNC0] (domain 0000 [bus ff]) 

SLEBD considers words which contain alphabet letters and 

ignore those having numbers in them. Comparing the 

preceding two messages, their similarity is 86% (i.e., 6/7). 

They have the same line pattern: 

[1, “ACPI\:”], [2, “PCI”], [3, “Root”], [4, “Bridge”], [6, “\(domain”] [8, 

“\[bus”] 

SLEBD annotates each single line pattern with 

“[Block_$num]”. Using these line patterns, we generate a 

temporary pattern list from the original log file. 

3.1.2 Event Block Consolidation  

As an illustrating example, the original log file has five lines, 

and its temporary pattern list is shown in Table 1. 
Table 1. Example temporary pattern list 

Block name Start and finish line number 

Block_1 [1, 1] 

Block_3 [2, 2] 

Block_1 [3, 3] 

Block_2 [4, 4] 

Block_3 [5, 5] 
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SLEBD then generates the block conditional 

probability matrix based on the temporary block list as 

shown in Table 2. 

Table 2. Block Conditional Probability Matrix 

 Block_1 Block_2 Block_3 Last 

Block_1  50% 50%  
Block_2   100%  
Block_3 50%   50% 

SLEBD also creates a forward range block list for each 

starting block as shown in Table 3.  

Table 3. Forward Block List 
Block_1 Block_1, Block_2, Block_3 

Block_2 Block_3 

Block_3 Block_1, Block_2, Block_3, last 

Bayes' theorem has an extended form, i.e., the Law of 

total probability [1], which can be expressed as 
                    P (E|A) = ΣP (E | A ∩ Bn) * P (Bn | A)                  (1) 

This inspires us to develop an algorithm that calculates 

the probability of a block, e.g., Block_3, happening in the 

forward range where another block, e.g., Block_1, appears. 
              PF (A→E) = ΣPF (A→Bn) * PF (Bn →E)              (2) 

We use “PF (B_1→B_3)” to denote this forward range 

probability as 

PF (B_1→B_3) 

= PF (B_1→B_2) * PF (B_2→B_3) + PF (B_1→B_3) 

=50% * 100% + 50% = 100% 

As PF (B_1→B_3) = 100%, greater than a predefined 

threshold, we can treat them as one pair of EB for possible 

merging. We also calculate the backward range probability 

PB (B_3->B_1) = 100% in a similar way. This indicates 

Block_1 and Block_3 are always happening together. We 

thus create a new EB pattern which have the start line pattern 

as Block_1 and the finish line pattern as Block_3.   

 This procedure is repeated until no more EBs can be 

merged. The produced EB patterns are stored in EBD. 

3.1.3 Improving EBD by using multiple logs. 

It is not guaranteed that EBD training files cover all possible 

events in a system. To tolerate false-merged EBs and add 

unseen EB patterns into EBD, SLEBD possesses a feature 

that improves EBD by using multiple logs. This helps merge 

newly found single line patterns and add them to EBD. It 

does not merge existing EB patterns with newly found EB 

patterns. These assure that new EB patterns can be captured 

and they do not affect existing EB patterns. 

3.2 Event Block Extraction 

SLEBD uses stack for messages from each node and records 

the number of log lines that have been received and 

processed for that node. For each log line, SLEBD generates 

a line pattern and searches for a possible EB pattern in EBD. 

If this line is the start of a block pattern, then the block ID 

and log line number is pushed into the stack for the node. If 

the line is the end of a block pattern, then the block ID saved 

at the top of the stack is popped out and compared with the 

end of the block pattern. In case that they match, this block 

ID and the log line number are written in an EB list report. If 

not, SLEBD stores them in a conflict list for further analysis 

and check if these two EB patterns are false-merged. 

4. EXPERIMENTS ON MUTRINO HPC SYSTEM 

We test SLEBD using logs collected from the Mutrino HPC 

system which is hosted at Sandia National Laboratories. The 

dataset has 553 console logs. We use the first 50 files for 

EBD building and the rest 503 files for event block 

extraction. We have detected 1409 single line patterns from 

the 50 building files, and finally got 737 EB patterns. Table 

4 shows the results from EBD building. Table 5 presents 

those from EB extraction. 
Table 4.  EBD Building Results on Mutrino 

Total number of log lines  617,255 

Total number of valid lines  592,978 

EB count  396,196 

Number of lines covered by 

EBs  

595,849 

Single line patterns count  1,409 

EB coverage ratio  96.5% (595,849/617,255) 

Learned EBD count  737  

Single line EB patterns  635 

Multi line EB patterns  102  
 

Table 5. Event Block Extraction Results on Mutrino  

Total number of log lines  2,548,174 

Total number of valid lines  2,455,553 

EB count  894,487 

Number of lines covered by 

EBs  

1,501,461 

EB coverage ratio  59%  

We find that some files used in EB extraction have a 

coverage lower than 20%. This infers that these files have 

new information that the EBD building phase does not have. 

We can explore them to enhance EBD. 

5. CONCLUSIONS 

Attractive features of SLEBD include that 1) it generates an 

event block pattern database from system logs. Users can 

use EBD to process real-time message streams. 2) It updates 

EBD by continuously analyzing multiple log files. The EBD 

can be evolved at run time. 3) It analyzes EB lists to 

identify the characteristics and dynamics of EBs, which 

enables operators to monitor system behavior and identify 

anomalies. For example, we can explore frequent sequential 

pattern mining methods [2, 3] on EB lists to capture 

execution sequence among EBs. 
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Motivation
HPC systems grow dramatically in both scale and complexity. The 

traditional manual diagnosis and even automated line-by-line analysis 
on HPC system log become infeasible or ineffective.

We found a single event of a component or system may generate 
multiple messages. We use Event Block (EB) to refer to such a set of 
log messages.

We propose a System Log Event Block Detection (SLEBD) 
approach that extract groups of log line that appear following similar 
sequences and explore these event blocks for event analysis and 
prediction.

System Log Preprocessing
Messages from compute nodes and service nodes are often mixed 

together. 
We group messages in a predefined time window from one node 

into a file. 

Modeling System Logs

1. Creating single Line patterns
Log messages for the same system events are generated by similar 

threads or devices. They have similar message pattern. For example: 
ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-fe])

ACPI: PCI Root Bridge [UNC0] (domain 0000 [bus ff])
SLEBD considers words which contain alphabet letters and ignore 

those having numbers in them. Comparing the preceding two 
messages, their similarity is 86% (i.e., 6/7). They have the same line 
pattern as

[1, “ACPI\:”], [2, “PCI”], [3, “Root”], [4, “Bridge”], [6, “\(domain”] 
[8, “\[bus”]

SLEBD annotates each single line pattern with a [message_$num]. 
Using these line patterns, we generate a temporary pattern list from 
the original logs.

2. Generating line pattern list and conditional probability matrix

Convert original logs into line pattern list

Generate forward conditional probability matrix

Event Block Detection Method

1. The Law of total probability
Bayes' theorem has an extended form, i.e., the Law of total 

probability [1]:
P (E|A) = ΣP (E | A ∩ Bn) * P (Bn | A) 

2. Closest message pair detection 
We then detect each message’s closest messages which tend to 

happen together in a short range. We design a function to calculate 
the probability that message_B happens when message_A happens:

where Message_i is the i-th message directly following Message_A.
We use PF (M_1→*M_3) to denote the probability that 

Message_3 appears in Message_1’s forward range and 
PB(M_1→*M_3) to denote that Message_1 appears in Message_3’s 
backward range. In our example:

PF(M_1->*M_3) 
= PF(M_1->M_3) + PF(M_1->M_2) * PF(M_2->M_3)
= 50% * 100% + 50% * 100% = 100%
We also generate a backward conditional probability matrix and 

calculate backward range probability in the same way:
PF(M_1->*M_3) = 100% and PB(M_1->*M_3) = 100%. 
Since both probabilities are above a pre-defined threshold. We say 

Message_1 and Message_3 are a pair of closest messages that can be 
merged into one event block.

3. Event Block Consolidation
After finding the closest message list:

We merge closest messages together into an Event Block and 
annotate this block with a name as [Block_$num]. 

System Log Modeling with Event Blocks
After detecting all event block patterns from the learning file set,

SLEBD converts original log files or streaming log messages into a
single line pattern list and replaces line patterns which belong to a
block by its corresponding block name and line numbers in the log file
or message stream.

In our experiment, the test log file is converted to:

Experimental Results
We test SLEBD using logs collected from Mutrino HPC system. The

dataset has 553 console logs. We use the first 50 files to build our EB
database.

Table 1. Experiment result on Muitrino log

Figure 1. Distribution of multi-line event blocks.
We also extract event blocks from the rest 503 log files and

compare them with the results from the first 50 files. Groups 13 and
14 show some change of system configuration or behavior.

Figure 2. Multi-line event block distribution among 20 EB groups.

Conclusions
SLEBD possesses the following attractive features.

1) It automatically builds an event block database (EBD) from logs.
2) It uses EBD to process and analyze real-time message streams.
3) It updates EBD by continuously analyzing multiple log files.
4) It analyzes EB lists to identify characteristics and dynamics of EBs

for system monitoring and anomaly detection.
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Message name Start and finish line number

Message_1 [1, 1]

Message_3 [2, 2]

Message_4 [3, 3]

Message_1 [4, 4]

Message_2 [5, 5]

Message_3 [6, 6]

Message_4 [7, 7]

Message_1 Message_2 Message_3 Message_4 Last

Message_1 50% 50%

Message_2 100%

Message_3 100%

Message_4 50% 50%

Block name Start and end line number

Block_1 [1, 3]

Block_1 [4, 7]

Total number of log lines 617,255

Total number of valid lines 592,978

Learned EBD count 737

Single line EB patterns 635

Multi line EB patterns 102

Event block (EB) count 396,196

Number of lines covered by EBs 595,849

Single line patterns count 1,409

EB coverage ratio 96.5% (595,849/617,255)

Message name Closest Message

Message_1 Message_3

Message_3 Message_4

Event Block name Message list

Block_1 Message_1, Message_3, Message_4
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