
Performance Prediction of Parallel Scientific Applications
Rodrigo Escobar and Rajendra V. Boppana

Computer Science Department, University of Texas at San Antonio, San Antonio, TX, 78249, USA
rodrigod.escobar@gmail.com,rajendra.boppana@utsa.edu

ABSTRACT
Performance prediction of parallel applications has benefits across
various domains in computing. It can provide data to developers
for fine tuning specific code regions, and it can give information
to job schedulers in high performance computing environments to
improve resource utilization. In this work, we present an approach
to performance prediction of parallel scientific applications using
fractals. The fractal theory has been used before to model the cache
miss ratios experienced by programs and the amount of traffic
in access networks, among others. For four well-known parallel
scientific applications, our technique gave good results with errors
of less than 6% in most cases.

KEYWORDS
Performance modeling, Fractal theory, Parallel applications

1 INTRODUCTION
Performance prediction of parallel workloads on High Performance
Computing (HPC) platforms has several applications. From code
optimization to efficient job scheduling, having good estimates
of the expected runtime of an application can help developers to
know what parts of their programs need special attention, or help
resource schedulers to dispatch jobs in order to improve overall
load balance and throughput [6]. It can also help HPC users to
determine the resources they need to request for their workloads
since inaccurate estimations might result in early cancellation of
jobs [14].

Most HPC application performance or runtime prediction tech-
niques start by identifying one or more phases (or code blocks) that
dominate the execution time of the target application using meth-
ods such as manual instrumentation of source code or automatic
analysis of traces. The phase runtimes are predicted and aggregated
for the overall application runtime prediction.

Known techniques to predict the performance of application
phases include the execution of synthetic code or skeletons [11],
static analysis, curve fitting [7], regression and machine learning
[10]. Recently, we proposed a prediction method that uses small-
scale executions along with statistical analyses to match each appli-
cation phase to a scientific kernel from a previously built reference
database and using the kernel runtime as a proxy for the application
phase runtime [5]. The current techniques require extensive source
code analysis [7, 11], pre-construction of reference kernel databases
[5, 7], or large number of samples [10].

In this work, we develop a mathematical model based on the frac-
tal theory to predict the performance of parallel applications that
have major computational phases with polynomial time complexity.
A fractal is a pattern that repeats itself at different scales [3]. The
fractal theory has been used before to model and predict the cache

©2017 Rodrigo Escobar and Rajendra V. Boppana, HPDC Poster

miss ratios experienced by programs [13], to model the amount of
traffic in access networks [1], and to model the burst of workloads
in clouds [6], among others. We use the theory of fractal to estimate
the runtimes of parallel scientific applications. Our experimental
results for four well-known parallel scientific applications show
that this method can give good prediction accuracy with errors less
than 6% in most cases.

2 METHODOLOGY
We predict an application runtime in three steps: Detection of major
computing functions (called phases, in this work) that account for
most of the application runtime, prediction of the phase runtimes
based on their fractal dimensions, and prediction of the overall
application runtime. These steps are described below.

2.1 Detection of major phases of applications
The major phases of an application are determined using a few
small-scale (small input) runs of the application. For each small-
scale execution, we use the Tuning and Analysis Utilities (TAU
[16]) to record, with low (1-2%) overhead, the execution time of
each function in the application. Using the execution logs by TAU,
we identify the functions which, cumulatively, account for 70% or
more of the total runtime. In each of the four applications we used,
just one or two functions take up 70% to 90% of the total runtime.

We determine, empirically, using several small-scale runs, a small
input size C, beyond which the percentage of the execution time
spent in the major phases is stable. Then, the application is run for
a few, k , additional small input sizes Ni = C + iδ , 1 ≤ i ≤ k , and the
runtimes of the phases and the overall application are recorded. In
our experiments, about five runs were needed to determine C, and
five more runs, k = 5, were enough to obtain accurate prediction
times. Each small-scale run took significantly less time, often less
than a minute, than that for the target input size.

2.2 Phase runtime prediction
For phases with polynomial time complexity, the property of self-
similarity holds since the number of operations executed for dif-
ferent input sizes differ only by a constant factor on a log scale.
Therefore, the runtime complexity of an application phase may be
modeled by fractals, which have been used to model self-similar
phenomena.

To predict a phase runtime for NLrд > Nk , we construct the

data points
(
ln

(
Ni

NLrд

)
, ln(Ti)

)
, where 1 ≤ i ≤ k and Ti are the

phase runtimes observed for small-scale runs. We determine the
regression linemx +b that has the least-squares fit to the data. The
slopem is the fractal dimension of the phase runtime polynomial, x
is the x-coordinate in the data set, and eb is the predicted runtime for
NLrд . For instance, Figure 1 shows the linear fit to the experimental
data obtained for the residual phase of SMG2000 on 32 cores.

HPDC 2017 Poster, June 2017, Washington D.C., USA Rodrigo Escobar and Rajendra V. Boppana

0.8 0.7 0.6 0.5 0.4 0.3

ln(Ni

NLrg
)

10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8

ln
(T

i)

Figure 1: Linear fit for the residual phase of application
SMG2000. NLrд = 260

2.3 Overall prediction
For the overall application runtime prediction, we also need to
predict the runtime of the parts of the application that were not in
the phases. To this end, we extrapolate, using linear regression, the
percentage of time that will be spent by each major phase for the
target input size NLrд .

If the estimated percentages of the total execution time spent in
phases P1, P2, . . . , Ph are rP1, rP2, . . . , rPh , respectively, and their
predicted runtimes are tP1, tP2, . . . , tPh , respectively, then our pre-
diction for the entire application runtime is T = (tP1 + . . . +
tPh)/(rP1 + . . . + rPh).

3 EXPERIMENTAL RESULTS
Results obtained in this work were obtained using a cluster of
five nodes at the University of Texas at San Antonio’s Institute
for Cyber Security (ICS) and four parallel scientific applications—
SMG2000 [8], SNAP [2], HPCG [12], and CoMD[9], which were
used in the most relevant prior works [5, 7, 11]—to evaluate the
proposed prediction technique. Each node has two Intel Xeon X5650
6-core, 2.67GHz processors, 128GB DDR3 RAM, one 800 GB SATA II
hard drive, and a 40Gb/s infiniband interconnection interface. The
software environment consisted of CentOS 6.5, GCC 4.4.7, Open
MPI 1.8, and TAU 2.26. We ran two sets of experiments: one using
8 cores (1 process/core) for application runs, and another using 32
cores.

Table 1: Prediction of application runtimes

App-Phase C ;NLrд Phase Runtime |%Error |
Predicted Actual Phase Overall

8 Cores
comd-ljforce 112;320 5109.9 5120.4 0.2% 0.6%
hpcg-mg 56;256 803.2 794.8 1.1 1.4
snap-dim3 96;512 2875.7 2976.2 3.4 5.0
smg-cyclicred 120;260 70.3 78.9 11.0 11.0

-residual 105.7 113.0 6.5
32 Cores
comd-ljforce 112;512 5470.6 5516.4 0.8% 1.8%
hpcg-mg 56;256 1727.7 1723.4 0.2 3.3
snap-dim3 96;640 1525.7 1582.0 3.6 6.0
smg-cyclicred 120;260 166.7 167.2 0.3 2.7

-residual 322.5 320.5 0.6

Table 1 shows the experimental data for various phase runtimes
in the four applications. For some applications, the time required for
processing increases whenmore cores are used. Therefore, although
the same input size is used, execution timemay be different, as in the
case of SMG2000. The application SMG2000 has two major phases,
while the others have just one major phase. The error in predicting
a phase runtime is less than 5% in 8 out of 10 cases. Although the
overall application runtime predictions require additional estimates
of the non-phase runtimes, the errors were 6% or less in 7 out of 8
cases. We are currently conducting additional experiments using
256 or more cores on the Chameleon bare metal platform [4] at the
Texas Advanced Computing Center.

4 CONCLUSIONS
In this work we presented an approach to predict runtimes of sci-
entific HPC applications whose major execution phases have poly-
nomial time complexity. Our approach is simple to use and only
requires a few small-scale executions. Our preliminary experiments
using different applications and number of processes gave good
results with errors of less than 6% in most cases.

In the future work, we will explore how our technique can be
expanded to take into account non-polynomial factors.

REFERENCES
[1] M. A. Arfeen, K. Pawlikowski, A. Willig, and D. McNickle. 2016. Fractal re-

newal process based analysis of emerging network traffic in access networks. In
2016 26th International Telecommunication Networks and Applications Conference
(ITNAC). IEEE, 265–270. https://doi.org/10.1109/ATNAC.2016.7878820

[2] National Energy Reserach Scientific Computer Center. 2017. SNAP. (2017). http:
//www.nersc.gov/research-anddevelopment/apex/apex-benchmarks/snap/

[3] M. Chandra, T. Shrimali, and A. Gupta. 2012. A Survey: Recent Development in
Fractals. In 2012 Fourth International Conference on Computational Intelligence and
Communication Networks. IEEE, 251–256. https://doi.org/10.1109/CICN.2012.36

[4] Chameleon Cloud. 2017. A configurable experimental environment for large-
scale cloud research. (2017). https://www.chameleoncloud.org/

[5] R. Escobar and R. V. Boppana. 2016. Performance Prediction of Parallel Ap-
plications Based on Small-Scale Executions. In 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC). IEEE, 362–371. https:
//doi.org/10.1109/HiPC.2016.049

[6] M. Ghorbani, Y. Wang, Y. Xue, M. Pedram, and P. Bogdan. 2014. Prediction and
control of bursty cloud workloads: A fractal framework. In 2014 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
IEEE, 1–9. https://doi.org/10.1145/2656075.2656095

[7] A. Jayakumar, P. Murali, and S. Vadhiyar. 2015. Matching Application Signatures
for Performance Predictions Using a Single Execution. In 2015 IEEE International
Parallel and Distributed Processing Symposium. IEEE, 1161–1170. https://doi.org/
10.1109/IPDPS.2015.20

[8] Lawrence Livermore National Laboratory. 2001. SMG2000. (2001). https://asc.
llnl.gov/computing_resources/purple/archive/benchmarks/smg/

[9] ExMatEx Extreme Materials at Extreme Scale. 2017. CoMD Proxy Application.
(2017). http://www.exmatex.org/comd.html

[10] Karan Singh, Engin Ipek, Sally A. McKee, Bronis R. de Supinski, Martin Schulz,
and Rich Caruana. 2007. Predicting parallel application performance via machine
learning approaches: Research Articles. Concurr. Comput. : Pract. Exper. 19, 17
(2007), 2219–2235. https://doi.org/10.1002/cpe.v19:17

[11] S. Sodhi and J. Subhlok. 2004. Skeleton based performance prediction on shared
networks. In IEEE International Symposium on Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE, 723–730. https://doi.org/10.1109/CCGrid.2004.1336704

[12] HPCG The High Performance Conjugate Gradients project. 2017. The high
performance conjugate gradients (hpcg) benchmark. (2017). http://www.
hpcg-benchmark.org/

[13] D. Thiebaut. 1989. On the fractal dimension of computer programs and its
application to the prediction of the cache miss ratio. IEEE Trans. Comput. 38, 7
(1989), 1012–1026. https://doi.org/10.1109/12.30852

[14] L. T. Yang, Xiaosong Ma, and F. Mueller. 2005. Cross-Platform Performance
Prediction of Parallel Applications Using Partial Execution. In Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference. IEEE, 40–40. https://doi.
org/10.1109/SC.2005.20

https://doi.org/10.1145/2656075.2656095
https://doi.org/10.1109/SC.2005.20
https://doi.org/10.1109/HiPC.2016.049
https://doi.org/10.1109/12.30852
https://doi.org/10.1109/IPDPS.2015.20
http://www.nersc.gov/research-anddevelopment/apex/apex-benchmarks/snap/
https://doi.org/10.1109/ATNAC.2016.7878820
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
https://doi.org/10.1109/CICN.2012.36
https://doi.org/10.1109/IPDPS.2015.20
http://www.exmatex.org/comd.html
http://www.hpcg-benchmark.org/
http://www.hpcg-benchmark.org/
https://doi.org/10.1109/HiPC.2016.049
https://doi.org/10.1002/cpe.v19:17
https://doi.org/10.1109/CCGrid.2004.1336704
https://www.chameleoncloud.org/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
http://www.nersc.gov/research-anddevelopment/apex/apex-benchmarks/snap/
https://doi.org/10.1109/SC.2005.20

Five nodes with the following characteristics:

Experimental Setup

Introduction

Benefits

• Determine resources needed for the
execution of workloads.

• Identify the code regions for fine-tuning and
performance improvement.

• Provide information for resource schedulers
to improve overall load balance and
throughput.

Approach

• Identify the major computing phases.

• Predict phase runtimes.

• Aggregate phase predictions to give an
overall prediction.

Limitations

• Suitable for applications with polynomial
runtimes.

Performance Prediction of Parallel Scientific Applications
Rodrigo D. Escobar and Rajendra V. Boppana, CS Department, UT San Antonio

Phase Prediction
• Profile the application for a few

small-scale input sizes N1, N2, ...,
Nk, where ݇ is a small integer.

• Use the Tuning and Analysis
Utilities (TAU) profiler configured
with the profile only option.

• Use the profile logs to detect the
functions (called phases in this
work) that comprise most of the
execution time.

• For phases with polynomial time
complexity, the property of self-
similarity holds.

• The number of operations
executed for different input sizes
differ only by a constant factor on
a log scale.

Modeling with Fractals
Mathematical model based on the fractal
theory to predict the performance of parallel
applications that have major computational
phases with polynomial time complexity.

Phase runtime prediction for input size NLrg:

• Use the profiles captured for the k small
input executions to construct the data
points:

ln ௜ܰ

௅ܰ௥௚
, ln ሺ ௜ܶሻ , ݅ ൑ ݅ ൑ ݇

Ti: Phase runtimes observed for the
small-scale runs.

• Fit a line ݔ݉ ൅ ܾ to the data points.

m: Fractal dimension of the phase
runtime polynomial.

x: x-coordinate in the data set

b: Line intercept with the y-axis.

eb: Predicted runtime for NLrg.

Prediction Methodology

Component Characteristics
Processors 2 x Intel Xeon X5650 @2.67GHz per node
Cores/Threads 12/24 per node
Cache L1 192 KB I + 192KB D

L2 1.5MB I+D
L3 12MB I+D
per processor

Memory 24GB RAM DDR3
Disk 800 GB SATA II
Network Infiniband Mellanox MT26428
Operating system CentOS 6.5
Compiler GCC 4.4.7
MPI Open MPI v1.8

For the overall application runtime prediction, we
also need to predict the runtime of the parts of the
application that were not in the phases.

• Extrapolate, using linear regression, the
percentage of time that will be spent by each
major phase for the target input size NLrg.

• If the estimated percentages of the total
execution time spent in phases P1, P2, . . . , Ph

are rP1, rP2, . . . , rPh, respectively, and their
predicted runtimes are tP1, tP2, . . . , tPh,
respectively, then our prediction for the entire
application runtime is:

ܶ ൌ
∑ ݅ܲݐ

௛
௜

∑ ݅ܲݎ
௛
௜

Overall Prediction

• Presented an approach to predict runtimes of
scientific HPC applications whose major execution
phases have polynomial time complexity.

• Our approach is simple to use and only requires a
few small-scale executions.

• Preliminary experiments gave good results with
errors less than 6% in most cases.

• In our future work we will explore how our technique
can be expanded to take into account
nonpolynomial factors.

Conclusions

We used four well-known parallel scientific applications to evaluate our
methodology:

• SNAP: A proxy application to model the performance of a modern
discrete ordinates neutral particle transport application.

• HPCG: An application that implements the multigrid preconditioned
conjugate gradient algorithm with a local symmetric Gauss-Seidel
smoother.

• SMG2000: A parallel semi-coarsening multigrid solver for the linear
systems arising from finite difference, finite volume, or finite element
discretizations of a diffusion equation on rectangular grids.

• CoMD: A proxy application for the simulation of classical molecular
dynamics (MD).

These applications were used in the most relevant prior works.

Applications

Contact:
Rodrigo D. Escobar: rodrigod.escobar@gmail.com

Rajendra V. Boppana: rajendra.boppana@utsa.edu

App Phase C Nk NLrg m b Phase Runtime (s) | %Error |
Predicted Actual Phase Overall

8 Cores
comd ljforce 112.0 176.0 320.0 3.0 15.4 5109.9 5120.4 0.2% 0.6%
hpcg computemg 56.0 120.0 256.0 3.1 13.6 803.2 794.8 1.1 1.4

smg2000
cyclicred 120.0 180.0 260.0 2.9 11.2 70.3 78.9 11.0

11.0
smgresidual 120.0 180.0 260.0 3.2 11.6 105.7 113.0 6.5

snap dim3sweep 96.0 160.0 512.0 3.1 14.9 2875.7 2976.2 3.4 5.0
32 Cores
comd ljforce 112.0 176.0 512.0 3.0 15.5 5470.6 5516.4 0.8% 1.8%
hpcg computemg 56.0 120.0 256.0 3.0 14.4 1727.7 1723.4 0.2 3.3

smg2000
cyclicred 120.0 180.0 260.0 2.9 12.0 166.7 167.2 0.3

2.7
smgresidual 120.0 180.0 260.0 2.8 12.7 322.5 320.5 0.6

snap dim3sweep 96.0 160.0 640.0 3.0 14.2 1525.7 1582.0 3.6 6.0

Time Distribution

Results

CoMD SMG2000

SNAP HPCCG

Linear Fit to Runtime Data Points

SMG2000 HPCG

Predictions

	Abstract
	1 Introduction
	2 Methodology
	2.1 Detection of major phases of applications
	2.2 Phase runtime prediction
	2.3 Overall prediction

	3 Experimental results
	4 Conclusions
	References

