
High-Productivity Languages
for

Peta-Scale Computing

Hans P. Zima
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

and
University of Vienna, Austria

zima@jpl.nasa.gov

International Symposium on High Performance Distributed Computing (HPDC 2009)
Munich, Germany, June 13th, 2009

1. Introduction

2. Towards High Productivity Programming

3. High Productivity Languages for HPC

4. Compiler and Runtime Technologies for High-
Level Locality Management

5. Parallel Computing in Space

6. Concluding Remarks

1.1. IntroductionIntroduction

2.2. Towards High Productivity Programming Towards High Productivity Programming

3.3. High Productivity Languages for HPCHigh Productivity Languages for HPC

4.4. Compiler and Runtime Technologies for HighCompiler and Runtime Technologies for High--
Level Locality ManagementLevel Locality Management

5.5. Parallel Computing in SpaceParallel Computing in Space

6.6. Concluding RemarksConcluding Remarks

Contents

It constitutes the third pillar of science
and engineering, in addition to theory
and experiment
Traditional application areas include
0DNA Analysis
0Drug Design
0Medicine
0Aerospace
0Manufacturing
0Weather Forecasting and Climate Research

New architectures provide new
opportunities
0Graph Traversals
0Dynamic Programming
0Backtrack Branch & Bound

It constitutes the third pillar of science
and engineering, in addition to theory
and experiment
Traditional application areas include
0DNA Analysis
0Drug Design
0Medicine
0Aerospace
0Manufacturing
0Weather Forecasting and Climate Research

New architectures provide new
opportunities
0Graph Traversals
0Dynamic Programming
0Backtrack Branch & Bound

High Performance Computing has Become an Enabler
of Progress in Science and Engineering

UC Berkeley’s
“Dwarfs”

Hardware Development over 60 Years

•Performance growth:
12 orders of magnitude

•Number of Processors:
From 1 to more than 100,000

This rise in the importance of HPC has
happened in the context of a dramatic
development of hardware technology
over past decades:

From Eniac (1946) …

103 OPS

…to LANL Roadrunner: Top 500 #1

Cell Blade

12,960 Cell chips (100 GF double precision)
Each Cell contains a PowerPC and 8 SPEs
6,480 dual-core Opterons
129,600 Cores

2,483 KW

1.105 PETAFLOPS

The first machine reaching
Peta-scale performance

Reaching the Power Wall

1946-2004
0general-purpose computing: sequential
0clock frequency: 5 KHz 4 GHz

Since 2004
0clock frequency growth is flat – as a result of power

wall, instruction-level parallelism (ILP) wall
0number of transistors per chip still grows exponentially
0the only way to maintain exponential performance

growth is parallelism

19461946--20042004
0general-purpose computing: sequential
0clock frequency: 5 KHz 4 GHz

Since 2004Since 2004
0clock frequency growth is flat – as a result of power

wall, instruction-level parallelism (ILP) wall
0number of transistors per chip still grows exponentially
0the only way to maintain exponential performance

growth is parallelism

Multi-Core Systems
Dominating Computer Architectures

Cell Broadband Engine (IBM/Sony/Toshiba)
0 Power Processor (PPE) and 8 Synergistic PEs (SPEs)
0 peak 100 GF double precision (IBM Power XCEll 8i)

Tile64 (Tilera Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0 170-300mW per core; 600 MHz – 1 GHz
0 192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: an RHBD version of Tile64 (2011)
0 49 cores, arranged in a 7X7 grid
0 70 GOPS at max power of 28W

80-core research chip from Intel (2011)
0 2D on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt
0 Note: ASCI Red (1996): first machine to reach 1 TF

4,510 Intel Pentium Pro nodes (200 MHz)
500 KW for the machine + 500 KW for cooling of the room

Cell Broadband Engine (IBM/Sony/Toshiba) Cell Broadband Engine (IBM/Sony/Toshiba)
0 Power Processor (PPE) and 8 Synergistic PEs (SPEs)
0 peak 100 GF double precision (IBM Power XCEll 8i)

Tile64 (Tile64 (TileraTilera Corporation, 2007)Corporation, 2007)
0 64 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0 170-300mW per core; 600 MHz – 1 GHz
0 192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: an RHBD version of Tile64 (2011)Maestro: an RHBD version of Tile64 (2011)
0 49 cores, arranged in a 7X7 grid
0 70 GOPS at max power of 28W

8080--core research chip from Intel (2011)core research chip from Intel (2011)
0 2D on-chip mesh network for message passing
0 1.01 TF (3.16 GHz); 62W power—16 GOPS/Watt
0 Note: ASCI Red (1996): first machine to reach 1 TF

4,510 Intel Pentium Pro nodes (200 MHz)
500 KW for the machine + 500 KW for cooling of the room

1. Introduction

2. Towards High Productivity Programming

3. High Productivity Languages for HPC

4. Compiler and Runtime Technologies for High-
Level Locality Management

5. Parallel Computing in Space

6. Concluding Remarks

1.1. IntroductionIntroduction

2.2. Towards High Productivity ProgrammingTowards High Productivity Programming

3.3. High Productivity Languages for HPCHigh Productivity Languages for HPC

4.4. Compiler and Runtime Technologies for HighCompiler and Runtime Technologies for High--
Level Locality ManagementLevel Locality Management

5.5. Parallel Computing in SpaceParallel Computing in Space

6.6. Concluding RemarksConcluding Remarks

Contents

“High productivity” implies three properties:
1. human-centric: programming at a high level of abstraction
2. high-performance: providing “abstraction without guilt”
3. reliability

Raising the level of abstraction is acceptable only if
target code performance is not significantly reduced

This relates to a broad range of topics:
0 language design
0 compiler technology
0 operating and runtime systems
0 library design and optimization
0 intelligent tool development
0 fault tolerance

““High productivityHigh productivity”” implies three properties:implies three properties:
1. human-centric: programming at a high level of abstraction
2. high-performance: providing “abstraction without guilt”
3. reliability

Raising the level of abstraction is acceptable only if
target code performance is not significantly reduced

This relates to a broad range of topics:
0 language design
0 compiler technology
0 operating and runtime systems
0 library design and optimization
0 intelligent tool development
0 fault tolerance

The Meaning of “High-Productivity”

The Success of the von Neumann Model

von Neumann
Model

Programming
Languages

Hardware

Fortran

C

Algol

Java

…

IBM 1960

IBM 1970

DEC 1982

Fujitsu 1994

…

Lenovo 2006

can be efficiently simulated

The result of such a successful “bridging model” is
performance portability: algorithms are written just once.

No comparable model has yet emerged for parallel
programming. Efforts to find such a model began
decades ago in the area of HPC…

real, allocatable A(:, :), B(:, :)
…

do while (.not. converged)
do J=1,N

do I=1,N
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+A(I,J-1)+A(I,J+1))

enddo
enddo

A(1:N,1:N)=B
…
enddo

MPI vs HPF:
An Example for Locality Management (Jacobi Relaxation)

Sequential Code

In a parallel code version, let A and B be partitioned into blocks
of columns that are mapped to different processors. All these
processors can work concurrently on their local data, but an
exchange must take place after each iteration…

…P1 P2 Ps

dependence pattern

Parallelization Based on Data Distribution

Pk do while (.not. converged)
do J=1,M ! Number of local columns

do I=1,N
B(I,J)=0.25(A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
enddo

enddo
…

Pk+1Pk-1

Processor Pk reads:
• rightmost column of Pk-1
• leftmost column of Pk+1.

Processor Pk copies:
• its leftmost column to Pk-1
• its rightmost column to Pk+1.

Boundary Exchange in Overlap Regions

After iteration:
Data Exchange

! purely local operation in each iteration:

halo regions

do while (.not. converged)
do J=1,M

do I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do

end do
A(1:N,1:N) = B(1:N,1:N)

local computation
initialize MPI

if (MOD(myrank,2) .eq. 1) then
call MPI_SEND(B(1,1),N,…,myrank-1,..)
call MPI_RCV(A(1,0),N,…,myrank-1,..)
if (myrank .lt. s-1) then

call MPI_SEND(B(1,M),N,…,myrank+1,..)
call MPI_RCV(A(1,M+1),N,…,myrank+1,..)

endif
else …

…

The Key Idea of The Key Idea of
High Performance Fortran (HPF)High Performance Fortran (HPF)

processors P(NUMBER_OF_PROCESSORS)
distribute(*,BLOCK) onto P :: A, B

do while (.not. converged)
do J=1,N

do I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do

end do
A(1:N,1:N) = B(1:N,1:N)

global computation

data distribution

HPF ApproachMessage Passing Approach

communication
compiler-generated

local view of data, local control,
explicit two-sided communication

global view of data, global control,
compiler-generated communication

… …

K. Kennedy, C. K. Kennedy, C. KoelbelKoelbel, and H. Zima: , and H. Zima: The Rise and Fall of High Performance Fortran: An Historical ObThe Rise and Fall of High Performance Fortran: An Historical Object Lessonject Lesson

Proc. History of Programming Languages III (HOPL III), San DiegoProc. History of Programming Languages III (HOPL III), San Diego, June 2007, June 2007

Fortran+MPI Communication
for 3D 27-point Stencil (NAS MG rprj3)

subroutine comm3(u,n1,n2,n3,kk)

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer n1, n2, n3, kk

double precision u(n1,n2,n3)

integer axis

if(.not. dead(kk))then

do axis = 1, 3

if(nprocs .ne. 1) then

call sync_all()

call give3(axis, +1, u, n1, n2, n3, kk)

call give3(axis, -1, u, n1, n2, n3, kk)

call sync_all()

call take3(axis, -1, u, n1, n2, n3)

call take3(axis, +1, u, n1, n2, n3)

else

call comm1p(axis, u, n1, n2, n3, kk)

endif

enddo

else

do axis = 1, 3

call sync_all()

call sync_all()

enddo

call zero3(u,n1,n2,n3)

endif

return

end

subroutine give3(axis, dir, u, n1, n2, n3, k)

use caf_intrinsics

implicit none

include 'cafnpb.h'

include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr

double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir

buff_len = 0

if(axis .eq. 1)then

if(dir .eq. -1)then

do i3=2,n3-1

do i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len,buff_id) = u(2, i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1

do i2=2,n2-1

buff_len = buff_len + 1

buff(buff_len, buff_id) = u(n1-1, i2,i3)

enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)

endif

endif

if(axis .eq. 2)then

if(dir .eq. -1)then

subroutine comm3(u,n1,n2,n3,kk)subroutine comm3(u,n1,n2,n3,kk)

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer n1, n2, n3, integer n1, n2, n3, kkkk

double precision u(n1,n2,n3)double precision u(n1,n2,n3)

integer axisinteger axis

if(.not. if(.not. dead(kkdead(kk))then))then

do axis = 1, 3do axis = 1, 3

if(if(nprocsnprocs .ne. 1) then.ne. 1) then

call sync_all()call sync_all()

call give3(axis, +1, u, n1, n2, n3, call give3(axis, +1, u, n1, n2, n3, kkkk))

call give3(axis, call give3(axis, --1, u, n1, n2, n3, 1, u, n1, n2, n3, kkkk))

call sync_all()call sync_all()

call take3(axis, call take3(axis, --1, u, n1, n2, n3)1, u, n1, n2, n3)

call take3(axis, +1, u, n1, n2, n3)call take3(axis, +1, u, n1, n2, n3)

elseelse

call comm1p(axis, u, n1, n2, n3, call comm1p(axis, u, n1, n2, n3, kkkk))

endifendif

enddoenddo

elseelse

do axis = 1, 3do axis = 1, 3

call sync_all()call sync_all()

call sync_all()call sync_all()

enddoenddo

call zero3(u,n1,n2,n3)call zero3(u,n1,n2,n3)

endifendif

returnreturn

endend

subroutine give3(axis, dir, u, n1, n2, n3, k)subroutine give3(axis, dir, u, n1, n2, n3, k)

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3, k, integer axis, dir, n1, n2, n3, k, ierrierr

double precision u(n1, n2, n3)double precision u(n1, n2, n3)

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

buff_id = 2 + dir buff_id = 2 + dir

buff_lenbuff_len = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

if(dir .eq. if(dir .eq. --1)then1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id) = u(2, i2,i3)) = u(2, i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(n1, buff_id) = u(n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

endifendif

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

if(dir .eq. if(dir .eq. --1)then1)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1, 2,i3), buff_id) = u(i1, 2,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id)= u(i1,n2, buff_id)= u(i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

endifendif

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

if(dir .eq. if(dir .eq. --1)then1)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1,i2,2), buff_id) = u(i1,i2,2)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1,i2,n3, buff_id) = u(i1,i2,n3--1)1)

enddoenddo

enddoenddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =

> buff(1:buff_len,buff_id)> buff(1:buff_len,buff_id)

endifendif

endifendif

returnreturn

endend

subroutine take3(axis, dir, u, n1, n2, n3)subroutine take3(axis, dir, u, n1, n2, n3)

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u(n1, n2, n3)double precision u(n1, n2, n3)

integer buff_id, integer buff_id, indxindx

integer i3, i2, i1integer i3, i2, i1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

if(dir .eq. if(dir .eq. --1)then1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

if(dir .eq. if(dir .eq. --1)then1)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

if(dir .eq. if(dir .eq. --1)then1)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

else if(dir .eq. +1) thenelse if(dir .eq. +1) then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

endifendif

returnreturn

endend

subroutine comm1p(axis, u, n1, n2, n3, subroutine comm1p(axis, u, n1, n2, n3, kkkk))

use use caf_intrinsicscaf_intrinsics

implicit noneimplicit none

include 'include 'cafnpb.hcafnpb.h''

include 'include 'globals.hglobals.h''

integer axis, dir, n1, n2, n3integer axis, dir, n1, n2, n3

double precision u(n1, n2, n3)double precision u(n1, n2, n3)

integer i3, i2, i1, integer i3, i2, i1, buff_len,buff_idbuff_len,buff_id

integer i, integer i, kkkk, , indxindx

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do i=1,nm2do i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

buff_lenbuff_len = nm2= nm2

do i=1,nm2do i=1,nm2

buff(i,buff_id) = 0.0D0buff(i,buff_id) = 0.0D0

enddoenddo

dir = +1dir = +1

buff_id = 2 + dir buff_id = 2 + dir

buff_lenbuff_len = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(n1, buff_id) = u(n1--1, i2,i3)1, i2,i3)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id)= u(i1,n2, buff_id)= u(i1,n2--1,i3)1,i3)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1,i2,n3, buff_id) = u(i1,i2,n3--1)1)

enddoenddo

enddoenddo

endifendif

dir = dir = --11

buff_id = 2 + dir buff_id = 2 + dir

buff_lenbuff_len = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_len,buff_idbuff(buff_len,buff_id) = u(2, i2,i3)) = u(2, i2,i3)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1, 2,i3), buff_id) = u(i1, 2,i3)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

buff_lenbuff_len = = buff_lenbuff_len + 1+ 1

buff(buff_lenbuff(buff_len, buff_id) = u(i1,i2,2), buff_id) = u(i1,i2,2)

enddoenddo

enddoenddo

endifendif

do i=1,nm2do i=1,nm2

buff(i,4) = buff(i,3)buff(i,4) = buff(i,3)

buff(i,2) = buff(i,1)buff(i,2) = buff(i,1)

enddoenddo

dir = dir = --11

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(n1,i2,i3) = u(n1,i2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,n2,i3) = u(i1,n2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,n3) = u(i1,i2,n3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

dir = +1dir = +1

buff_id = 3 + dirbuff_id = 3 + dir

indxindx = 0= 0

if(axis .eq. 1)thenif(axis .eq. 1)then

do i3=2,n3do i3=2,n3--11

do i2=2,n2do i2=2,n2--11

indxindx = = indxindx + 1+ 1

u(1,i2,i3) = u(1,i2,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 2)thenif(axis .eq. 2)then

do i3=2,n3do i3=2,n3--11

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,1,i3) = u(i1,1,i3) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

if(axis .eq. 3)thenif(axis .eq. 3)then

do i2=1,n2do i2=1,n2

do i1=1,n1do i1=1,n1

indxindx = = indxindx + 1+ 1

u(i1,i2,1) = u(i1,i2,1) = buff(indxbuff(indx, buff_id), buff_id)

enddoenddo

enddoenddo

endifendif

returnreturn

endend

param coeff: domain(1) = [0..3]; // for 4 unique weight values

param Stencil: domain(3) = [-1..1, -1..1, -1..1]; // 27-points

function rprj3(S, R) {

param w: [coeff] float = (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float

= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce [off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

paramparam coeffcoeff: : domaindomain(1) = [0..3]; // (1) = [0..3]; // forfor 4 unique weight values4 unique weight values

paramparam Stencil: Stencil: domaindomain(3) = [(3) = [--1..1, 1..1, --1..1, 1..1, --1..1]; // 1..1]; // 2727--pointspoints

functionfunction rprj3(S, R) {rprj3(S, R) {

paramparam w: [w: [coeffcoeff]] floatfloat = (/0.5, 0.25, 0.125, 0.0625/);= (/0.5, 0.25, 0.125, 0.0625/);

paramparam w3d: [(i,j,k) w3d: [(i,j,k) inin Stencil] Stencil] floatfloat

= w((i!=0) + (j!=0) + (k!=0));= w((i!=0) + (j!=0) + (k!=0));

constconst SD = S.Domain,SD = S.Domain,

RstrRstr = R.stride;= R.stride;

S = [S = [ijkijk inin SD] SD] sumsum reducereduce [off [off inin Stencil]Stencil]

(w3d(off) * (w3d(off) * R(ijkR(ijk + + RstrRstr*off));*off));

}}

Chapel 3D NAS MG Stencil rprj3

function rprj3(S,R) {function rprj3(S,R) {

const Stencil: domain(3) = [const Stencil: domain(3) = [--1..1, 1..1, --1..1, 1..1, --1..1], // 1..1], // 2727--pointspoints

w: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/), // ww: [0..3]real = (/0.5, 0.25, 0.125, 0.0625/), // weightseights

w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));w3d: [(i,j,k) in Stencil] = w((i!=0) + (j!=0) + (k!=0));

forallforall ijkijk in S.domain doin S.domain do

S(ijkS(ijk) = sum reduce [off in Stencil] (w3d(off) *) = sum reduce [off in Stencil] (w3d(off) * R(ijkR(ijk + + R.strideR.stride*off));*off));

}}

Large-scale hierarchical architectural parallelism
0tens of thousands to hundreds of thousands of processors
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by
the architecture?
0automatic parallelization and locality management are not

powerful enough to provide a general efficient solution
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Large-scale hierarchical architectural parallelism
0tens of thousands to hundreds of thousands of processors
0component failures may occur frequently

Extreme non-uniformity in data access

Applications: large, complex, and long-lived
0multi-disciplinary, multi-language, multi-paradigm
0dynamic, irregular, and adaptive
0survive many hardware generations portability is important

How to exploit the parallelism and locality provided by
the architecture?
0automatic parallelization and locality management are not

powerful enough to provide a general efficient solution
0explicit support for control of parallelism and locality must be

provided by the programming model and the language

Productivity Challenges for Peta-Scale Systems

1. Introduction

2. Towards High Productivity Programming

3. High Productivity Languages for HPC

4. Compiler and Runtime Technologies for High-
Level Locality Management

5. Parallel Computing in Space

6. Concluding Remarks

1.1. IntroductionIntroduction

2.2. Towards High Productivity Programming Towards High Productivity Programming

3.3. High Productivity Languages for HPCHigh Productivity Languages for HPC

4.4. Compiler and Runtime Technologies for HighCompiler and Runtime Technologies for High--
Level Locality ManagementLevel Locality Management

5.5. Parallel Computing in SpaceParallel Computing in Space

6.6. Concluding RemarksConcluding Remarks

Contents

HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

HPF Language Family
0predecessors: CM-Fortran, Fortran D, Vienna Fortran
0High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0successors: HPF+, HPF/JA

OpenMP
Partitioned Global Address Space (PGAS) Languages
0Co-Array Fortran
0UPC
0Titanium

High-Productivity Languages developed in the HPCS Program
0Chapel
0X10
0Fortress

Domain-Specific Languages and Abstractions

Languages for High Performance Computing

PGAS Language Overview

Partitioned Global Address Space (PGAS) languages
are based on the Single-Program-Multiple-Data (SPMD)
model

Providing a shared-memory, global view, of data,
combined with support for locality
0global address space is logically partitioned, mapped to processors
0single-sided shared-memory communication
0local and remote references distinguished in the source code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified
Parallel C (UPC), Titanium

Partitioned Global Address Space (PGAS) languages
are based on the Single-Program-Multiple-Data (SPMD)
model

Providing a shared-memory, global view, of data,
combined with support for locality
0global address space is logically partitioned, mapped to processors
0single-sided shared-memory communication
0local and remote references distinguished in the source code
0implemented via one-sided communication libraries (e.g., GASNet)

Local control of execution via processor-centric view

Main representatives: Co-Array Fortran (CAF), Unified
Parallel C (UPC), Titanium

Support for global view of data, but local control

Example: PGAS vs. HPCS
Setting up a block-distributed array in Titanium vs. Chapel

myBlock

blocksP0

myBlock

blocksP1

myBlock

blocksP2

// determine parameters of local block:
Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell = startCell + (numCellsPerBlockSide-[1,1,1]);

//create local myBlock array:
double [3d] myBlock = new double[startCell:endCell];

//build the distributed structure:
//declare blocks as 1D-array of references (one element per processor)
blocks.exchange(myBlock);

Source: K.Yelick et al.: Parallel Languages and Compilers: Perspective from the Titanium Experience

const D: domain(3) = [l1..u1,l2..u2,l3..u3]
distributed(block,block,block);

…
var A: [D] real;
…

Titanium Code Fragment Chapel Code Fragment

Titanium: a dialect of Java that supports distributed multi-dimensional arrays,
iterators, subarrays, and synchronization/communication primitives

High-Productivity Computing Systems (HPCS) is a DARPA-sponsored
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel (Cascade Project, led by Cray Inc.)
0 X10 (PERCS Project, led by IBM)
0 [Fortress (HERO Project [until 2006], led by Sun Microsystems)]

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

High-Productivity Computing Systems (HPCS) is a DARPA-sponsored
program for the development of peta-scale architectures (2002-2010)

HPCS Languages
0 Chapel (Cascade Project, led by Cray Inc.)
0 X10 (PERCS Project, led by IBM)
0 [Fortress (HERO Project [until 2006], led by Sun Microsystems)]

These are new, memory-managed, object-oriented languages
0global view of data and computation generally no distinction

between local and remote data access in the source code
0support for explicit data and task parallelism
0explicit locality management
0Chapel is unique in that it provides user-defined data distributions

HPCS Languages
global view of data, global control

Chapel Language Concepts
http://chapel.cs.washington.edu

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales

Close relationship to mainstream languages
0object-oriented
0modules for Programming-in-the-Large

Explicit high-level control of parallelism
0data parallelism

domains, arrays, indices: support distributed data aggregates
forall loops and iterators: express data parallel computations

0task parallelism
cobegin statements: specify task parallel computations
synchronization variables, atomic sections

Explicit high-level control of locality
0“locales”: abstract units of locality
0data distributions: map data domains to sets of locales
0on clauses: map execution components to sets of locales

Close relationship to mainstream languages
0object-oriented
0modules for Programming-in-the-Large

domain

domain

align data

distribute
data

work
align data with work

(affinity)

distribute
work

Aspects of Locality

Locale Set

Locale: an abstract
unit of locality

Data Distributions Can Be …

or irregular, possibly depending
on runtime information:

regular, and easy
to deal with in the
compiler/runtime

system:

Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95, etc.)
0sparse subsets of Cartesian products
0sets of object instances, e.g., for graph-based data structures

Iterators based on domains

Concept influenced by HPF templates, ZPL regions

Domains are first-class objects

Domain components
0index set
0distribution
0set of arrays

Index sets are general sets of “names”
0Cartesian products of integer intervals (as in Fortran95, etc.)
0sparse subsets of Cartesian products
0sets of object instances, e.g., for graph-based data structures

Iterators based on domains

Domains

locale view: a logical view for a set of locales

distribution: a mapping of an index set to a locale view

array: a map from an index set to a collection of variables

Domains and Distributions in Context

index sets: Cartesian products, sparse, sets

Source: Brad Chamberlain (Cray Inc.)

Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)=[0..n+1,0..n+1] distributed(block,block)on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real; /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (i,j) in D { /* parallel iteration over domain D */

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)…distributed(block,block) on L;

D: subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real;

A(0,1..n) = 1.0;

do {
forall (i,j) in D {

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Locale Grid L

Key Features
•global view of data/control
•explicit parallelism (forall)
•high-level locality control
•NO explicit communication
•NO local/remote distinction

in source code

Chapel’s Framework for
User-Defined Distributions

Provides functionality for:
0distributing index sets across locales
0arranging data within a locale
0defining specialized distribution libraries

This capability is in its effect similar to function
specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Provides functionality for:
0distributing index sets across locales
0arranging data within a locale
0defining specialized distribution libraries

This capability is in its effect similar to function
specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Locality Control in Chapel: Basic Concepts

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1. naïve use of a predefined library distribution (block, cyclic, indirect,…)
2. specification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3. specification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions

Domain: first class entity
0 components: index set, distribution, associated arrays, iterators

Array—Mapping from a Domain to a Set of Variables
Framework for User-Defined Distributions: three levels
1.1. nanaïïve use of a predefined library distribution (block, cyclic, indive use of a predefined library distribution (block, cyclic, indirect,rect,……))
2.2. specification of a distribution byspecification of a distribution by

global mapping: index set locales
interface for the definition of mapping, distribution segments, iterators
system-provided default functionality can be overridden by user

3. specification of a distribution by global mapping andspecification of a distribution by global mapping and
layout mapping: index set locale data space

High-Level Control of Communication
0 user-defined specification of halos; communication assertions

User-Defined Distributions:
Global Mapping

class MyC: Distribution {
const z:int; /* block size */
const ntl:int; /* number of target locales*/

function map(i:index(source)):locale { /* global mapping for MyC */
return Locales(mod(ceil(i/z-1)+1,ntl));

}

class MyB: Distribution {
var bl:int = ...; /* block length */

function map(i: index(source)):locale { /* global mapping for MyB */
return Locales(ceil(i/bl));

}
}

const D1C: domain(1) distributed(MyC(z=100))=1..n1;
const D1B: domain(1) distributed(MyB) on Locales(1..num_locales/10)=1..n1;
var A1: [D1C] real;
var A2: [D1B] real;

/* declaration of distribution classes MyC and MyB: */

/* use of distribution classes MyC and MyB in declarations: */

Example: Banded Distribution

1

2 4 81 3 5 6 7 9j

3

5

6

7

8

9

2

4

i

d 2 3 4
10
11

12

13

14

15

16

17
18

1

2

3

4

1

2

5 6 7 8 9 Diagonal A/d = { A(i,j) | d=i+j }

bw = 3 (bandwidth)

p=4 (number of locales)

Distribution—global map:

Blocks of bw diagonals are
cyclically mapped to locales

Layout:
Each diagonal is represented
as a one-dimensional dense
array. Arrays in a locale are
referenced by a pointer array

0 53 0 0 0
0 0 0 0 0
19 0 0 0 0
0 0 0 0 0
0 0 0 17 0
0 0 0 0 93
0 0 0 0 0

0 0 0
0 21 0
0 0 16
72 0 0
0 0 0
0 0 0
0 13 0

0 0 0 0
0 23 69 0
27 0 0 11

44 0 0 19
37 0 0 0
0 0 64 0

D0

53
19
17
93

C0

2
1
4
5

R0

1
2
2
3
3
4
5
5

D0

53
19
17
93

D0

53
19
17
93

C0

2
1
4
5

R0

1
2
2
3
3
4
5
5

C1

7
8
6
7

R1

1
1
2
3
4
4
4
5

D1

21
16
72
13

D0

53
19
17
93

C2

2
3
1
4

R2

1
1
3
5

D2

23
69
27
11

D3

44
19
37
64

C3

5
8
5
7

R3

1
3
4
5

const D: domain(2)=[1..m,1..n];
const DD: domain(D) sparse(CRS)= …;
distribute(DD,Block_CRS);
var AA: [DD] real;

…

Example
Matrix-Vector Multiplication (sparse CRS)

param n_spe = 8; /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale; /* declaration of SPE array */

var A: [1..m,1..n] real distributed(block,*) on SPE;
var x: [1..n] real replicated on SPE;
var y: [1..m] real distributed(block) on SPE;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

(original)(original)
ChapelChapel
versionversion

Example: Heterogeneous Distributions
Matrix-Vector Multiply on the Cell

var A: [1..m,1..n] real;
var x: [1..n] real;
var y: [1..m] real;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

Chapel withChapel with
(implicit)(implicit)

heterogeneous heterogeneous
semanticssemantics

A

A1
A2

A8

A3
A4
A5
A6
A7

y1
y2
y3
y4
y5
y6
y7
y8

y

x1
x2

xm

SPEk local memory (k=4)

x

PPE Memory

A1
A2

A8

A3
Ak
A5
A6
A7

y1
y2
y3
yk
y5
y6
y7
y8

x1
x2

xm

x

SPE1

SPE2

SPE3

SPE5

SPE6

SPE7

SPE8

SPE4

Ak: k-th block of rows
yk: k-th block of elements
xk: k-th element

yA

Example: Nested Task and Data Parallelism

! In task2:
var A:[m1,m2]float distributed(…)on …;
…

forall (i,j) in A do … Locale Grid L

s p a r e s

task2 task3

! In task3:
var B:[m]… distributed(…)on …;
…

forall k in B do …
task1 task4

task4task1

task2

task3

1. Introduction

2. Towards High Productivity Programming

3. High Productivity Languages for HPC

4. Compiler and Runtime Technologies for High-
Level Locality Management

5. Parallel Computing in Space

6. Concluding Remarks

1.1. IntroductionIntroduction

2.2. Towards High Productivity Programming Towards High Productivity Programming

3.3. High Productivity Languages for HPCHigh Productivity Languages for HPC

4.4. Compiler and Runtime Technologies for HighCompiler and Runtime Technologies for High--
Level Locality ManagementLevel Locality Management

5.5. Parallel Computing in SpaceParallel Computing in Space

6.6. Concluding RemarksConcluding Remarks

Contents

Suprenum Project (Bonn University)
First translator

Fortran 77 + data distribution spec Message Passing Fortran

(Michael Gerndt’s Ph.D. work, 1989)

Compilation/Runtime Technology for irregular
distributions developed in the context of Fortran D,
Vienna Fortran, HPF-2, and other approaches in the
1990s

Architecture/Application Adaptive Compilation and
Runtime Technology

Introspection Technology

SuprenumSuprenum Project (Bonn University)Project (Bonn University)
First translatorFirst translator

Fortran 77 + data distribution specFortran 77 + data distribution spec Message Passing FortranMessage Passing Fortran

(Michael (Michael GerndtGerndt’’ss Ph.D. work, 1989)Ph.D. work, 1989)

Compilation/Runtime Technology for irregular Compilation/Runtime Technology for irregular
distributions developed in the context of Fortran D, distributions developed in the context of Fortran D,
Vienna Fortran, HPFVienna Fortran, HPF--2, and other approaches in the2, and other approaches in the
1990s1990s

Architecture/Application Adaptive Compilation and
Runtime Technology

Introspection Technology

Compiler/Runtime Technology
for High-Level Locality Management

Inspector/Executor Method
(Koelbel, Mehrotra, Saltz)

forall i in D on home(c(k(i))) independent {
y(k(i)) = x(i) + c(k(i)) * z(k(i))

}

Generated code for processor p

INSPECTOR:
Loop analysis: determine iteration sets and for all p’ all sets RCV(p,p’) of

data elements owned by p’ and accessed in p
Compute send sets: SENDS(p.p’) of data elements that need to be sent from p to p’

for all p’

EXECUTOR:
Send: for all p’ such that SENDS(p.p’) is non-empty send all data in SENDS(p,p’)

to p’
Execute local iterations
Receive: for all p’ such that RCV(p,p’) is non-empty receive data in RCV(p,p’) into

a local TEMP
Execute non-local iterations locally

Code generation technology inspired by ATLAS
and similar systems
Hybrid approach
0model-guided: static models of architecture, profitability

these are the conventional methods of compiler analysis
for theoretical and practical reasons results are in general sub-optimal

0empirical optimization using actual execution of
parameterized code, intelligent search

Exploit complementary strengths of both methods:
0static compiler technology reduces search space by

pruning unprofitable solutions
0empirical data provide accurate measure of optimization

impact

Code generation technology inspired by ATLAS Code generation technology inspired by ATLAS
and similar systemsand similar systems
Hybrid approachHybrid approach
0model-guided: static models of architecture, profitability

these are the conventional methods of compiler analysis
for theoretical and practical reasons results are in general sub-optimal

0empirical optimization using actual execution of
parameterized code, intelligent search

Exploit complementary strengths of both methods: Exploit complementary strengths of both methods:
0static compiler technology reduces search space by

pruning unprofitable solutions
0empirical data provide accurate measure of optimization

impact

Architecture- and Application-Adaptive
Compilation and Runtime Technology

Note: Our HPDC conference paper describes this approach in detail

1. Introduction

2. Towards High Productivity Programming

3. High Productivity Languages for HPC

4. Compiler and Runtime Technologies for High-
Level Locality Management

5. Parallel Computing in Space

6. Concluding Remarks

1.1. IntroductionIntroduction

2.2. Towards High Productivity Programming Towards High Productivity Programming

3.3. High Productivity Languages for HPCHigh Productivity Languages for HPC

4.4. Compiler and Runtime Technologies for HighCompiler and Runtime Technologies for High--
Level Locality ManagementLevel Locality Management

5.5. Parallel Computing in SpaceParallel Computing in Space

6.6. Concluding RemarksConcluding Remarks

Contents

High Performance Computing (HPC) and Embedded
Computing (EC) have been traditionally at the extremes
of the computational spectrum

However, future HPC, EC, and HPEC systems will need
to address many similar issues (at different scales):
0multi-core as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing (HPC) and Embedded
Computing (EC) have been traditionally at the extremes
of the computational spectrum

However, future HPC, EC, and HPEC systems will need
to address many similar issues (at different scales):
0multi-core as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing and
Embedded Computing: Common Issues

More than 50 NASA Missions Explore
Our Solar System

Ulysses studying the Ulysses studying the
sunsun

Spitzer studying stars and Spitzer studying stars and
galaxies in the infraredgalaxies in the infrared

Two Voyagers on an Two Voyagers on an
interstellar missioninterstellar mission

Cassini studying SaturnCassini studying Saturn

QuikScatQuikScat, Jason 1, CloudSat, and GRACE , Jason 1, CloudSat, and GRACE
(plus ASTER, MISR, AIRS, MLS and TES (plus ASTER, MISR, AIRS, MLS and TES

instruments) monitoring Earth.instruments) monitoring Earth.

GALEX surveying galaxies GALEX surveying galaxies
in the ultravioletin the ultraviolet

Mars Odyssey, rovers Mars Odyssey, rovers
““SpiritSpirit”” and and ““OpportunityOpportunity””

studying Marsstudying Mars

Aqua studying EarthAqua studying Earth’’s s
oceansoceans

Aura studying EarthAura studying Earth’’s s
atmosphereatmosphere Hubble studying the universeHubble studying the universe

Chandra studying the Chandra studying the
xx--ray universeray universe

CALIPSO studying EarthCALIPSO studying Earth’’s s
climateclimate

MESSENGER on its way to MESSENGER on its way to
MercuryMercury

New Horizons on its New Horizons on its
way to Plutoway to Pluto

Radiation
0Total Ionizing Dose (TID)—amount of ionizing radiation over time:

can lead to long-term cumulative degradation, permanent damage
0Single Event Effects—caused by a single high-energy particle

traveling through a semiconductor and leaving a ionized trail
Single Event Latchup (SEL)—catastrophic failure of the device (prevented by
Silicon-On-Insulator (SOI) technology)
Single Event Upset (SEU) and Multiple Bit Upset (MBU)—change of bits in
memory: a transient effect, causing no lasting damage

Temperature
0wide range (from -170 C on Europa to >400 C on Venus)
0short cycles (about 50 C on MER)

Vibration
0launch
0Planetary Entry, Descent, Landing (EDL)

Radiation
0Total Ionizing Dose (TID)—amount of ionizing radiation over time:

can lead to long-term cumulative degradation, permanent damage
0Single Event Effects—caused by a single high-energy particle

traveling through a semiconductor and leaving a ionized trail
Single Event Latchup (SEL)—catastrophic failure of the device (prevented by
Silicon-On-Insulator (SOI) technology)
Single Event Upset (SEU) and Multiple Bit Upset (MBU)—change of bits in
memory: a transient effect, causing no lasting damage

Temperature
0wide range (from -170 C on Europa to >400 C on Venus)
0short cycles (about 50 C on MER)

Vibration
0launch
0Planetary Entry, Descent, Landing (EDL)

Space Challenges: Environment
Constraints on Spacecraft Hardware

Bandwidth
06 Mbit/s maximum, but typically much less (100 b/s)
0spacecraft transmitter power less than light bulb in

a refrigerator

Latency (one way)
020 minutes to Mars
013 hours to Voyager 1

Navigation
0Position
0Velocity

Bandwidth
06 Mbit/s maximum, but typically much less (100 b/s)
0spacecraft transmitter power less than light bulb in

a refrigerator

Latency (one way)
020 minutes to Mars
013 hours to Voyager 1

Navigation
0Position
0Velocity

Space Challenges: Communication and Navigation
Constraints on mission operations

Neptune Triton
Explorer

Europa Astrobiology
Laboratory

Titan ExplorerEuropa

Mars Sample Return

Explorer

NASA/JPL: Potential Future Missions
Artist Concept

New Requirements

New applications and the limited downlink to

Earth lead to two major new requirements:

1. Autonomy

2. High-Capability On-Board Computing

Such missions require on-board computational power
ranging from tens of Gigaflops to hundreds of Teraflops.
Emerging multi-core technology provides this capability.

The Traditional Approach will not Scale

The traditional approach to space-borne computing is
based on radiation-hardened processors and fixed
redundancy (e.g.,Triple Modular Redundancy—TMR)
0Current Generation (Phoenix and Mars Science Lab –’09 Launch)

Single BAE Rad 750 Processor
256 MB of DRAM and 2 GB Flash Memory (MSL)
200 MIPS peak, 14 Watts available power (14 MIPS/W)

Radiation-hardened processors today lag commercial
architectures by a factor of up to 100

The traditional approach to spaceThe traditional approach to space--borne computing is borne computing is
based on radiationbased on radiation--hardened processors and fixed hardened processors and fixed
redundancy (e.g.,Triple Modular Redundancyredundancy (e.g.,Triple Modular Redundancy——TMR)TMR)
00Current Generation (Phoenix and Mars Science Lab Current Generation (Phoenix and Mars Science Lab ––’’09 Launch)09 Launch)

Single BAE Rad 750 Processor
256 MB of DRAM and 2 GB Flash Memory (MSL)
200 MIPS peak, 14 Watts available power (14 MIPS/W)

RadiationRadiation--hardened processors today lag commercial hardened processors today lag commercial
architectures by a factor of up to 100architectures by a factor of up to 100

Multi-Core Systems
Will Provide the Required Capability

Tile64 (Tilera Corporation, 2007)
064 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0170-300mW per core; 600 MHz – 1 GHz
0192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: a radiation-hardened version
of Tile64 (announced for 2011)
0currently in development at Boeing Corporation
049 cores, arranged in a 7X7 grid
070 GOPS at max power of 28W

Tile64 (Tile64 (TileraTilera Corporation, 2007)Corporation, 2007)
064 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0170-300mW per core; 600 MHz – 1 GHz
0192 GOPS (32 bit)—about 10 GOPS/Watt

Maestro: a radiationMaestro: a radiation--hardened version hardened version
of Tile64 (announced for 2011)of Tile64 (announced for 2011)
0currently in development at Boeing Corporation
049 cores, arranged in a 7X7 grid
070 GOPS at max power of 28W

EARTH

Spacecraft
Control

Computer

(SCC)

Communication
Subsystem

(COMM)

Fault-Tolerant High-Capability Computational Subsystem

System
Controller

(SYSC)

P
M

P
M

P
MP

M
P
M

P
M

P
MP

M
P
M

P
M

P
M

High-Performance
Computing System (HPCS)

Intelligent
Mass Data

Storage
(IMDS)

Instruments

Instrument Interface

Interface
fabric

Intelligent
Processor

In
Memory

Data
Server

Multi-core
Compute
Engine
Cluster

…

High-Capability On-Board System:
A Hybrid Approach

Transient Faults

SEUs and MBUs are radiation-induced transient hardware
errors, which may corrupt software in multiple ways:
0 instruction codes and addresses
0user data structures
0synchronization objects
0protected OS data structures
0synchronization and communication

Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM
0control flow errors
0unwarranted exceptions
0hangs and crashes
0synchronization and communication faults

SEUsSEUs and and MBUsMBUs are radiationare radiation--induced transient hardware induced transient hardware
errors, which may corrupt software in multiple ways:errors, which may corrupt software in multiple ways:
0 instruction codes and addresses
0user data structures
0synchronization objects
0protected OS data structures
0synchronization and communication

Potential effects include:Potential effects include:
0wrong or illegal instruction codes and addresses
0wrong user data in registers, cache, or DRAM
0control flow errors
0unwarranted exceptions
0hangs and crashes
0synchronization and communication faults

Introspection…
provides dynamic monitoring, analysis, and feedback,
enabling system to become self-aware and context-aware:
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threads

can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis

IntrospectionIntrospection……
provides provides dynamicdynamic monitoring, analysis, and feedback, monitoring, analysis, and feedback,
enabling system to become selfenabling system to become self--aware and contextaware and context--aware: aware:
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

exploits adaptively the available threadsexploits adaptively the available threads

can be applied to different scenarios, including:can be applied to different scenarios, including:
0fault tolerance
0performance tuning
0power management
0behavior analysis

This makes introspection technology
applicable to on-board computing as
well as to large-scale supercomputing

A Framework for Introspection

An Introspection Module (IM)

Application

Introspection System sensors

actuators

.

.

.

.

.

.

Inference Engine
(SHINE)

Monitoring

Analysis

Recovery

Prognostics

Knowledge
Base

System
Knowledge

Application
Knowledge

Domain
Knowledge

…

Focus of this talk was on high-productivity general-purpose languages
0data parallelism—regular or irregular—is the main source of scalable

parallelism
0successful, industrial-strength implementations still under development

Research challenges remain
0performance porting of legacy applications
0 integration of codes in a multi-language-multi-paradigm environment
0architecture- and application-adaptive compiler/runtime technology
0 intelligent tools for performance tuning, fault tolerance, power management

Domain-specific approaches represent viable high-level alternatives

Heterogeneous systems and thread/task parallelism
0many approaches exist, almost all at a low level
0explicit thread parallelism unmanageable for average programmer (E. Lee)
0abstractions needed that concisely express typical patterns reliably

Focus of this talk was on high-productivity general-purpose languages
0data parallelism—regular or irregular—is the main source of scalable

parallelism
0successful, industrial-strength implementations still under development

Research challenges remain
0performance porting of legacy applications
0 integration of codes in a multi-language-multi-paradigm environment
0architecture- and application-adaptive compiler/runtime technology
0 intelligent tools for performance tuning, fault tolerance, power management

Domain-specific approaches represent viable high-level alternatives

Heterogeneous systems and thread/task parallelism
0many approaches exist, almost all at a low level
0explicit thread parallelism unmanageable for average programmer (E. Lee)
0abstractions needed that concisely express typical patterns reliably

Conclusion

	 �High-Productivity Languages �for �Peta-Scale Computing �� Hans P. Zima��Jet Propulsion Laboratory, California Institute o
	 Contents
	High Performance Computing has Become an Enabler � of Progress in Science and Engineering
	 Hardware Development over 60 Years
	From Eniac (1946) …
	…to LANL Roadrunner: Top 500 #1
	 Reaching the Power Wall
	 Multi-Core Systems� Dominating Computer Architectures
	 Contents
	 The Meaning of “High-Productivity” �
	The Success of the von Neumann Model
	 Fortran+MPI Communication� for 3D 27-point Stencil (NAS MG rprj3)
	 Chapel 3D NAS MG Stencil rprj3
	 Productivity Challenges for Peta-Scale Systems�
	 Contents
	 Languages for High Performance Computing�
	PGAS Language Overview
	 HPCS Languages
	Chapel Language Concepts� http://chapel.cs.washington.edu
	 Domains
	 Example: Jacobi Relaxation in Chapel
	 Example: Jacobi Relaxation in Chapel
	 Chapel’s Framework for User-Defined Distributions
	 Locality Control in Chapel: Basic Concepts
	User-Defined Distributions:� Global Mapping
	 Example: Heterogeneous Distributions� Matrix-Vector Multiply on the Cell
	 Example: Nested Task and Data Parallelism
	 Contents
	 Compiler/Runtime Technology�for High-Level Locality Management
	 Inspector/Executor Method � (Koelbel, Mehrotra, Saltz)
	 Architecture- and Application-Adaptive� Compilation and Runtime Technology
	 Contents
	More than 50 NASA Missions Explore � Our Solar System
	Space Challenges: Environment� Constraints on Spacecraft Hardware
	 Space Challenges: Communication and Navigation� Constraints on mission operations
	 The Traditional Approach will not Scale
	 Multi-Core Systems� Will Provide the Required Capability
	 High-Capability On-Board System: � A Hybrid Approach
	Transient Faults
	 A Framework for Introspection
	 An Introspection Module (IM)�
	 Conclusion�

