

Nasa Pleiades Infiniband Communications Network

HPDC 2009 Munich

Ruediger Wolff rgw@sgi.com

NASA Pleiades Supercomputer

- Top500 11/08: place number 3
- 51200 cores
- 608.83 TF/s Rpeak
- 487.01 TF/s Rmax 80% efficiency
- 100 Compute Racks
 - 64 nodes each
 - Intel Xeon E5472 (Harpertown, 3 GHz)
- Infiniband network
 - 10D Hypercube topology
 - Two independent network planes

AGI Altix ICE: Integrated Compute Environment Blades, Enclorures, Infiniband and Racks

•Blades

- •2 Intel multicore chips
- diskless blades
- •Remote management

Enclosure

- •Big savings in cables through backplane
- •N+1 Fans, Powersuplies

Rack

- •4 Enclosures per rack
- •16 Blades per enclosure
- •64 blades per rack
- •128 Intel chips p. rack

Infiniband

- HCA on Motherboard
- Infiniband Backplane
- Integrated IB "edge"switches

Infiniband Network

- Open Fabric and switch management software
 - OFED and OPENSM
- 4xDDR and 4xQDR supported
 - Static min-hop routing scheme
- Dual-port Infiniband HCAs enable
 - Two independent networkplanes
 - Used as two separate planes
 - MPI communications on one plane
 - I/O and TCP/IP on other plane
 - Dual-rail operation support in SGI MPI, Intel MPI and others
 - alternate messageblocks between network ports on HCA
 - Near linear scaling for larger messages
 - Redundant network

Infiniband Network

- Choice of Infiniband network topology
 - Clos Network using "big Infiniband Switches"
 - Hypercube network
- SGI enhanced Hypercube Network
 - No additional "big switches"
 - Good bisection bandwidth
 - Low latency across the system
 - Implementation does not need special length cables

SGI Altix ICE 4xQDR IFB Backplane Topology

Edge switches part of Blade enclosure infrastructure

Construction of the single plane Hypercube

1D Hypercube, single Blade enclosure 16 Blades, 32 sockets, 128 cores

Hypercubes build from a single blade enclosure are called regular hypercubes

Infiniband switches

2D Hypercube

2D Hypercube, 2 Enclosures 32 Blades, 64 sockets, 256 cores

Single Rack – 3D Hypercube

3D Hypercube

This 3d hypercube represents a single rack.

Two indendent parallel network planes

Two Racks – 4D enhanced Hypercube – Basic Cell

Larger configuration start from a two rack cell and form larger structures from this cell.

Doubling the number of racks rack increases the dimension of the hypercube.

Hypercube Topology Estimated MPI Latency

Altix ICE System Latency

Less than 2usec latency across the full system In case of 4xQDR enhanced hypercube

Hypercube Topology Bisection Bandwidth

Larger – 128 blade – basic cell results in significant higher bisection bandwidth

MPI All_to_All Comparison between hyper cube and enhanced hypercube cells.

Legend:

HC_1: single-rail hypercube
HC_2: dual-rail hypercube
EHC_1: single-rail enhanced
hypercube
EHC 2: dual-rail enhanced

hypercube

For MPI_Alltoall operations having more communication channels (HC-2) is more important for performance than having faster channels (EHC-1)

Application Performance on ICE8200EX in Hypercube v/s Fat-Tree Topology

Topology effects on Altix ICE+

- WRF, BQCD, PALM are interconnect BW sensitive
- -MM5, CPMD and Molpro are interconnect latency sensitive

Summary

- SGI Altix ICE is a high performance, highly scalable compute system
- Infiniband options range from switchless hypercube topologies to Clos-Net type networks
- Hypercube topologies built around two rack building blocks offer high bandwidth and low latency

designed. engineered. results.