
Maestro:
a Self-Organizing

Dataflow Framework

Kees van Reeuwijk
reeuwijk@few.vu.nl

 13 June 2009
HPDC 2009

mailto:reeuwijk@few.vu.nl

2

Motivation

● Parallel systems are often
inhomogeneous and unreliable

● Communication links are often
inhomogeneous or imperfect too

● Parallelism is increasingly mainstream
(multi-core, GPUs, specialized
processors). Even a single consumer PC
can be a heterogeneous system.

● Call it what you want: distributed
system, grid, cloud, cluster...

3

Distributed Systems Problems

● Keeping an application running
(efficiently) is hard!

– Resources come and go
– Resources crash
– Heterogeneous: load balance??

● Any fixed use of resources is bound to
fail

Resource allocation must be
dynamic and adaptive

4

Dataflow framework

● Computation nodes with
one input, one output

 interface Job {

 Object run(Object in); }

● Computation nodes connected in
series (pipeline) or in parallel

● Nested
● Predictable performance per node

5

Maestro: self-organizing

● Nodes with special tasks are
 failure points/bottlenecks

● In particular central nodes (scheduler!)

Solution: peer to peer

 ⇒ self organizing

6

Exception: work insertion

● Currently there is one exception:
only one node inserts work in the
system, and handles final results

● Application specific

7

Maestro Nodes

Any number, may join and leave any time

Each node contains:
● Worker: execute jobs from queue
● Master: distribute jobs over workers
● Gossiper: exchange performance info

MasterWorker

Gossiper

8

Scheduling policy

● Each master tries to optimize for total
completion time of all remaining steps

● Measured and gossiped:
– Worker queue & compute stats
– Master queue stats
– Transmission time (not gossiped)

● Regulars are informed ASAP
● Efficient nodes are favored

9

Learning strategy

Emergent behavior: the system learns
an efficient schedule:
 reenforcement learning

Consequences:
● In a homogeneous system the local

node is favored
● New nodes should start with

optimistic estimates

10

Limited commitment

Every worker should have one job
waiting in its queue: no more, no less
● Limits commitment to one node, but

reduces idle time
● Gives opportunities to less attractive

nodes

11

Implemented on Ibis

● A framework for distributed computing
● Based on Java (portable!)
● Provides message passing,

serialization (IPL layer)
● Join-Elect-Leave support (malleability)
● Robustness is central

– Detect failed nodes
– Circumvent NATs, firewalls, etc.
– Handle multiple NICs (multi-homing)

12

Benchmark

● Operations on video frames

1.Generate 720x576 frame

2.Scale to 1440x1152

3.Sharpen (3x3 convolution)

4.Compress (JPEG)

5.Discard

13

Testbed

VU cluster of the DAS3:
● 85 nodes:

– 2x dual-core 2.4 GHz AMD Opteron
– 4 GB memory

● Myrinet 10G interconnect
● In total there are 5 clusters with

similar specs throughout the
Netherlands

14

Node configurations
● Homogeneous

– We expect:
● Work is evenly divided over the nodes
● All five steps of the video processing on

the same node

● All steps in one job
– We expect:

● Work is evenly divided

– Maestro is just used as master/worker

15

Homogeneous results

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

Homogeneous
nodes
Homogeneous
nodes, one job

Nodes

E
xe

cu
tio

n
 t

im
e

 p
e

r
fr

a
m

e
 (

s)

16

Heterogeneous
configurations

● Half no scaling, half no sharpening
– Now forced to `zigzag'

● Slow scaling, slow sharpening
– At least the `zigzag'

● One job, slow scaling, sharpening
– Slow computation unavoidable

17

All results

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Slow nodes, one job
Slow nodes
Disabled nodes
Homogeneous
nodes
Homogeneous
nodes, one job

Nodes

E
xe

cu
tio

n
 t

im
e

 p
e

r
fr

a
m

e
 (

s)

18

Work distribution

Generate

Scale

Sharpen

Compress

Discard

0 5000 10000 15000 20000 25000 30000 35000 40000

Generate

Scale

Sharpen

Compress

Discard

0 5000 10000 15000 20000 25000 30000 35000 40000

10 nodes with slow scaling, 10 with slow sharpening

20 homogeneous nodes

19

Learning: homogeneous

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

64 nodes
16 nodes
4 nodes

Frames per node

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

fr
a

m
e

 (
s)

20

Learning: slow nodes

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

64 nodes
16 nodes
4 nodes

Frames

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

fr
a

m
e

21

Fault tolerance
● We start a run on

30 nodes
● After a few seconds

kill some nodes
● Ideally, the rest of

the nodes should
take over the work

● All masters restart any work that
was lost on the dead nodes

● Retry outstanding frames

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Ideal Homo-

geneous
Slow
nodes

Kill percentage

C
o

m
p

u
te

 ti
m

e
 p

e
r

fr
a

m
e

 (
s)

22

Conclusions & future work

Conclusions
● Self-organization of a data-flow

computation works
● Can exploit strong points of non-

homogeneous systems
● Extremely robust

Future work
● Integrate with divide & conquer
● Scalability

23

Questions?

www.cs.vu.nl/ibis

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

