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Motivation

● Parallel systems are often 
inhomogeneous and unreliable

● Communication links are often 
inhomogeneous or imperfect too

● Parallelism is increasingly mainstream 
(multi-core, GPUs, specialized 
processors). Even a single consumer PC 
can be a heterogeneous system.

● Call it what you want: distributed 
system, grid, cloud, cluster...
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Distributed Systems Problems

● Keeping an application running 
(efficiently) is hard!

– Resources come and go
– Resources crash
– Heterogeneous: load balance??

● Any fixed use of resources is bound to 
fail

Resource allocation must be 
dynamic and adaptive
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Dataflow framework

● Computation nodes with
one input, one output

  interface Job {

  Object run(Object in); }

● Computation nodes connected in 
series (pipeline) or in parallel

● Nested
● Predictable performance per node
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Maestro: self-organizing

● Nodes with special tasks are
 failure points/bottlenecks

● In particular central nodes (scheduler!)

Solution: peer to peer

 ⇒ self organizing



6

Exception: work insertion

● Currently there is one exception: 
only one node inserts work in the 
system, and handles final results

● Application specific
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Maestro Nodes

Any number, may join and leave any time

Each node contains:
● Worker: execute jobs from queue
● Master: distribute jobs over workers
● Gossiper: exchange performance info

MasterWorker

Gossiper
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Scheduling policy

● Each master tries to optimize for total 
completion time of all remaining steps

● Measured and gossiped:
– Worker queue & compute stats
– Master queue stats
– Transmission time (not gossiped)

● Regulars are informed ASAP
● Efficient nodes are favored
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Learning strategy

Emergent behavior: the system learns 
an efficient schedule:
 reenforcement learning

Consequences:
● In a homogeneous system the local 

node is favored
● New nodes should start with 

optimistic estimates
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Limited commitment

Every worker should have one job 
waiting in its queue: no more, no less
● Limits commitment to one node, but 

reduces idle time
● Gives opportunities to less attractive 

nodes
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Implemented on Ibis

● A framework for distributed computing
● Based on Java (portable!)
● Provides message passing, 

serialization (IPL layer)
● Join-Elect-Leave support (malleability)
● Robustness is central

– Detect failed nodes
– Circumvent NATs, firewalls, etc.
– Handle multiple NICs (multi-homing)
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Benchmark

● Operations on video frames

1.Generate 720x576 frame

2.Scale to 1440x1152

3.Sharpen (3x3 convolution)

4.Compress (JPEG)

5.Discard
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Testbed

VU cluster of the DAS3:
● 85 nodes:

– 2x dual-core 2.4 GHz AMD Opteron
– 4 GB memory

● Myrinet 10G interconnect
● In total there are 5 clusters with 

similar specs throughout the 
Netherlands
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Node configurations
● Homogeneous

– We expect:
● Work is  evenly divided over the nodes
● All five steps of the video processing on 

the same node

● All steps in one job
– We expect:

● Work is evenly divided

– Maestro is just used as master/worker
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Homogeneous results
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Heterogeneous 
configurations

● Half no scaling, half no sharpening
– Now forced to `zigzag'

● Slow scaling, slow sharpening
– At least the `zigzag' 

● One job, slow scaling, sharpening
– Slow computation unavoidable 
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All results
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Work distribution
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Learning: homogeneous
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Learning: slow nodes
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Fault tolerance
● We start a run on

30 nodes
● After a few seconds

kill some nodes
● Ideally, the rest of

the nodes should
take over the work

● All masters restart any work that 
was lost on the dead nodes

● Retry outstanding frames
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Conclusions & future work

Conclusions
● Self-organization of a data-flow 

computation works
● Can exploit strong points of non-

homogeneous systems
● Extremely robust

Future work
● Integrate with divide & conquer
● Scalability
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Questions?

www.cs.vu.nl/ibis

?
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