A Novel Graph Based Approach
for Automatic Composition of

High Quality Grid Workflows

Jun OQin, Thomas Fahringer, Radu Prodan

University of Innsbruck, Austria

HPDC 2009 Munich, Germany June 11-15, 2009

Outline

Introduction: Grid workflow & composition
Comparison with existing work
Background: ASKALON, AGWL

Formal definition of the Grid workflow composition problem
Grid workflow composition algorithm

-~ ADD graph and its creation

-~ Workflow extraction

-~ Workflow optimization

-~ Complexity analysis

-~ Composition of Grid workflows with branches and loops
Experimental results

Summary and Future work

Introduction

Grid workflow is an important programming model for the Grid
-~ a Grid workflow consists of a set of activities, and
-+ a set of control flow/data flow dependences
Grid workflow composition
selection of workflow activities
specification of control flow and data flow dependences

time consuming and error prone process, optimization takes
longer time
Abstract Grid workflow
-~ using abstract activities reduces the user effort to select activities
-~ the selection among hundreds abstract activities is still challenging
Automatic Grid workflow composition

-~ different from that in Business Process Management, Semantic Web
Services, and requires high quality: portable, fault tolerant, optimized

1o

et
>

O €

>
~
>
(@)

vt
=

>

® Hé—‘

&

o

Introduction

Grid workflow is an important programming model for the Grid
-~ a Grid workflow consists of a set of activities, and
-+ a set of control flow/data flow dependences

Grid workflow composition
-+ selection of workflow activities

A novel ADD graph based approach for automatic composition
of high quality Grid workflows =

Abstract Grid workflow (Aa] [25)
-~ using abstract activities reduces the user effort to select activities
-~ the selection among hundreds abstract activities is still challenging

Automatic Grid workflow composition

: : : : A6
-~ different from that in Business Process Management, Semantic Web -
Services, and requires high quality: portable, fault tolerant, optimized

Existing Work

~» Existing work suffers from one of the following drawbacks:
Limiting to specific workflow notation systems such as Petri Nets
Focusing only on simple constructs like DAG
Cannot handle or do not consider alternative control flows

No workflow optimization
Only generating workflow instances from workflow templates
Assuming workflow tasks has ranks
-~ Qur approach goes beyond existing work:
A general solution
Generation of alternative workflows, thus support fault tolerance
Considering workflow optimization
Generation of workflows with branches and parallel/sequential

loops

ASKALON

Grid Application Developmegnt and Computing Environment

Meta Performance Performance
Scheduling Predictio Analysis

< Web Services
B e
= Monitoring Univ. of Innsbruck,

Austria

| ASKALON

Grid Infrastructure

Job ‘ : \ Information | , I

1 Globus

www.askalon.org

altix1: 16CPUs
ZID: 272CPUs
karwen
genZE——

http://www.askalon.org
http://www.askalon.org

Abstract Grid Workflow Language
(AGWL)

XML-based language for describing scientific Grid workflows at a
high level of abstraction

A rich set of control flow constructs

-~ sequence, parallel, if, switch, while, doWhile, for, forEach,
parallelFor, parallelForEach, dag, alternative

data flow links: source data port = sink data port

-~ |n case of multiple sink data ports, each receives a data copy
~» data collection

properties and constraints

the main interface to ASKALON

Abstraction in AGWL

4 .
L data semantics

Activity apstract: the meaning of the data, referring to a
Example:
Month, EvenMonth,
ModelParameter, RAMSModelParameter

Activity Type abstract:
(AT) syntactic description (

Buiznaiouon

data representation)

storage related info of the data, such as
—— _ storage type, content type, etc.
ctivity concrete.. | Example:

Deployment full description re-

: : File in FileSystem,
AD quired for execution integer in Memory,

string in Memory

Month]
xth RAMSHist >RAMSModeledAtmosphere
SeaSurface—>

e o =5 s
AF:) AF.O

J

Jun Qin, Thomas Fahringer, A Novel Domain Oriented Approach for Scientific Grid Workflow Composition, SC’08.

Definition of the Grid workftlow

composition problem

~+ STRIPS (STanford Research Institute Problem Solver)
~& |nitial state, goal state, actions
~~ Apply STRIPS into Grid workflow composition

~& gtate: a set of Data Classes, indicating the
availability of data

~& |nitial state: user provided data which can be
consumed by activities

~& goal state: user required data which must be
produced by the composed workflow

~& action: Activity Function

Definition of the Grid workftlow

composition problem

state1: D1, D2.1, D3, D21 is subclass of D2 according to ontology

)

state1 =AF. D+ \>[]_)-
(entails) D, [AF D4

~—————

stateo: D1, D2.1, D3, D4

state1: Month, SeaSurface

[Month:

state1 = AF.1

:{ RAMSHist H RAMSModeIdedAtmosphere]

[SeaSurface:

statez: Month, SeaSurface, RAMSModeldedAtmosphere

Definition of the Grid workftlow

composition problem

-~ The Grid workflow composition problem can be defined by the
function:

f : (Sz’nitysgoal;Af) v)

Sinit: the Initial state

Sgoal: the goal state

AF: the set of AFs among which some AFs will be selected for the
composition of the Grid workflow w

w is a DAG of AFs connected by control flow edges

1) sinit = AF.l for any AF which has no incoming control flow edges

2) sinit U (Uare a7 AF.O) = AF.I for any AF which has predecessors
3) Sinit U (UAFO) = Sgoal

A Simulated Domain

-+ Data Classes (DC)

2\ (2\) (2\ (2\
\\ J \\ J \\ J

D s 2) e 2 e N
D~ Ds Do D10
- J —

& Activity Functions (AF)

AFo | (AR) (AR) (AR) (AR] ((AFs)
AFs) ((AF) (AFs] (AR) (AFu]

2@ @ @
(ce]

L (o2}

m m

& ECIN I
LO LO N~
g e E 6
< O © N~
L L LL L
Al Al ™| | WO o || N~
B s B B
B 8§ @ @&
o ~— Al ™

LL L L L

— — — | | N

8 G g e

C
'
=
5
i
il
2
e
=
E

A D

ADD Graph

& Activity Function

& [ata

& Dependence

ADD Graph Creation

Sinit = {Do, D1}
Sgoal = {D9! D10}

" Contributed DC
. initial state (ch)

Contrlbutlng AF
. (cAF)

ADD Graph Creation

Sinit = {Do, D1}
Sgoal = {Dog, D10}

.

. Superstate ’

Notation: dependence

D> 0 Dio v D> O Sgoal v

Dependence

Notation: dependence

D2 O Sgoal v

Dependence

Notation: ncDC(S), ncAF(S)

Necessary Contributed DCs of Superstate: ncDC(S)

Necessary Contributing AFs of Superstate: ncAF(S)

altAF(So)
altAF(S1)
altAF(S2)
altAF(Ss)

Notation: altAF(S)

= 1: {AFo, AF1}

= 2: {AF3, AFs}, {AF4, AFs}

= 3 : {AFs, AFq}, {AF7, AFg}, {AFs}
=1: {AF10}

Alternative AF Combination of Superstate: aItAF(S)

Calculation of altAF(S)

AL

(A

(AF2| |AFa| [AFs]

v 2

| altAF(S) | =5: {AFs}, {AF1, AF2}, {AF2, AF4, AFs}, {AF1, AFe, AF7}, {AF4, AFs, AF¢, AF7}

Worktlow Extraction

altAF(So): {AFo, AF4}

altAF(S1): {AFs, AFs} {AFi, AFs}
altAF(S2): {AFe, AF9} {AF7, AFo} {AFs}
altAF(Ss3): {AFio}

Worktlow Extraction

altAF(So): {AFo, AF4}

altAF(S1): {AFs, AFs} {AFi, AFs}
altAF(S2): {AFe, AF9} {AF7, AFo} {AFs}
altAF(Ss3): {AFio}

Worktlow Extraction

altAF(So): {AFo, AF+}

altAF(S1): {AFs, AFs} AFn-AFs)
altAF(S2): {AFe, AF9} {AF7, AFo} {AFs}
altAF(Ss3): {AFi0}

D

Worktlow Extraction

altAF(So): {AFo, AF1}

altAF(S1): {AFs, AFs} {AFr-AFs)

altAF(Sz): tAFsAFsy {AF7, AFo} -tAd=)
altAF(Ss3): {AF10}

D

Worktlow Extraction

altAF(So): {AFo, AF1}

altAF(S1): {AFs, AFs} {AFr-AFs)

altAF(Sz): tAFsAFsy {AF7, AFo} -tAd=)
altAF(Ss3): {AF10}

D

Worktlow Extraction

altAF(So): {AFo, AF1}

altAF(S1): {AFs, AFs} {AFr-AFs)

altAF(Sz): {AFeAra—{AFrArs {AFs)
altAF(S3): {AFi0}

[AFs | AFs

‘t yet: Ds, D7 are not necessary

Worktlow Extraction

altAF(So): {AFo, AF1}

altAF(S1): {AFs, AFs} {AFr-AFs)

altAF(Sz): {AFeAra—{AFrArs {AFs)
altAF(S3): {AFi0}

not yet: Ds, D7 are not necessary
not yet: |altAF(S1)| =2: {AF3s}, {AFs}

Worktlow Extraction

altAF(So): {AFo, AF1}

altAF(S1): {AFs, AFs} {AFr-AFs)

altAF(Sz): {AFeAra—{AFrArs {AFs)
altAF(S3): {AFi0}

)
ad

—f-
()
V

-
o
jii
Q
(S
S
%
1]
>
o
arun
g
.
=

-
o
jie
Q
S
&
%
1]
>
O
anus
2
-
=

Why Alternative Workflows

To support fault tolerance
Why fault tolerance?
~ services and computers of distributed systems may fail unexpectedly

~» services may be registered or unregistered at any time without intimation,
may happen even during workflow execution

-~ Especially important for the Grid due to its dynamic nature.
Alternative workflows is helpful

~ service associated with alternative activities may still available

~ alternative activities may run on different computers

Automatic generation of alternative workflows makes ASKALON very different
from other systems.

L
-
O
L
@l
i’
9
>
Q
-
(T
-
iR
(S
e
h
>
qu
b

L
-
O
oF
oF
i’
9
>
Q
-
(T
-
iR
(S
e
it
>
qu
b

L
-
O
oF
oF
i’
9
>
Q
-
(T
-
iR
(S
e
it
>
qu
b

L
-
O
oF
oF
i’
9
>
Q
-
(T
-
iR
(S
e
it
>
qu
b

C
i
=
i
£
4 TR
i
L
2
O
540
s
Sy
=

Workflow Optimization

(6]

)&

O
®

818

C
i
P
o
E
=
L
L
=
O
o
tiia
—
=

1mization

-
®)
@
| -
©
(@}
-
@)
O
(D)
£
T
-
O
-
-]
o
)
x
LL]

N
s

SJ10SS920.4d

<

<

Q.
i
.
f
i
i
o
=

S10SS920.d

74— —

o

o
=
P
i
E
SIS
()
O
2
O
iy
LY
b=
>

Algorithm Analysis

W is the set of all possible workflows, given a set of x AF's, an
initial state sinir and a goal state Sgoal

Proposition 1. The worst case execution time taken by our
algorithm to find an element of W is a quadratic in x if W # O. If

such an element is not found by our algorithm, then necessarily
W=ga. o

2

r+(x—1D+(x—-2)+...+1=

Proposition 2. If an element of W is found by our algorithm, the
number of the superstates of the ADD graph is minimum, which
also means that the length of the DAG workflow is minimum.

ADD Graph Creation

Sinit = {Do, D1}
Sgoal = {DQ, D10}

all cAF(S) are disjoint

Branches & Loops

-+ Branches
& Seoa={Do, Dio(agwl:precondition="Ds=true”)}

& STEP 1: Sinit/=Sinit , Sgoati=4{Do, Ds}, to obtain ADD graph with S, =
Sgoall, thereby get workflow W

STEP 2: Sinit2=Sn, Sgoaiz={D10}, get worktflow W>

STEP 3: the workflow 1s W1 , followed by an i f construct where W 1s
the then branch, el se branch 1s empty

~» Parallel Loops

~~ smi—={D1(agwl:cardinality="multiple”, agwl:access-order="parallel”),
D>}

~ STEP 1: sini={D1, D2}, get workflow W

~ STEP2: put WinaparallelForEach construct, which iterates
over data collection D;

Sequential Loops

~+ Sequential Loops
& So0ai—{D9, Dio(agwl:postcondition="D19p<0.1")}
& STEP 1: sgoa={Do, D10}

~~ STEP 2: find the start/stop point of the sequential
loop

-+ STEP 3: insert doWhile loop

Find Seq. Loop 1n a simple ADD Graph

Seoa=1D9, Dio(agwl:postcondition="D;9<0.1”)}

(o
&
)

Do
D1
D2
D3

Experimental Results

Experiment 1
~» the composition of a Grid workflow in a simulated domain,
Hardware and software environment
~ 2GB Memory, 2.4 GHz Intel Core 2 Duo CPU, JRE 1.5.0_16
Ontology Setup
-+ thousands of AFs and DCs: AFo, AF4, ...
-~ thousands of DCs: Do, Dy, ...
~ each AF has random number (between 1 and 10) of input and output DCs
~ AFo: (Do) = (D1.1)
/
AF1: (Do, D1) = (D2)
>
AF2: (D2) = (D1, D3.2)

/

AF3: (Do, D1, D3) = (Da4.1)

AF100: (D3, D12, D3s, Ds2, Dgo, De3, D10o) = (Ds, D23, Ds2, D73, D101.8)

Aonooo:

Algorithm Execution Time

1800 I I | I |

| | |
Total Execution Time

1600 ADD Graph Creation Time

1400
1200
1000

800 -

600
o0 2000 AFs: 20.70s

[92)
©
&
o
O
)
LIk
()
£
|_
=
9
el
=
O
O
>
LLI

200

O]]]]]]]]]
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Activity Functions

Experimenta.l Re sult§

~~ Experiment 2

the composition of a real
world Grid workflow MeteoAG
in the meteorology domain

19 AFs in the ontology
algorithm execution time:

0.54 seconds for non-
optimized version

0.64 seconds for
optimized version

<<Activity>>
simulation_init

| <<ParallelForEach>> pForEag

<<Activity>>
case_init

<<ParallelFor>> pForAkmin

<<Activity>>
rams_makevfile

<<Activity>> <<Activity>>
rams_init rams_all

Simulation !

evu_compare
J

[<<Activity>>) Case
r

<<Activity>>
raver

<<Activity>>
revu_all

'} | <<ParallelForEach>> pForEag

<<Activity>>
simulation_init

<<Activity>>
case_init

'l | " <<ParallelFor>> pForAkmin

<<DAG>>dagRAMS

<<Activity>>
rams_makevfile

<<Activity>> <<Activity>>
rams_init rams_all

<<Activity>>
revu_compare

<<Activity>> . i E E
raver] Simulation{; :

g Case
[<<Activity>> j
revu_all

Experimental Results

& Experiment 3

~+ the comparison of the execution time of the optimized and non-
optimized MeteoAG

~» Austrian Grid testbed

Grid Site CPU Location

Dual Core
karwendel AMD Opteron : Innsbruck

altix 1 Itanium 2 . Innsbruck
schatberg [tanium 2 : Salzburg
altix 1jku Itanium 2 : Linz
c703-pc1801 Pentium 4 : Innsbruck
c703-pc2601 Pentium 4 : Innsbruck

Workftlow Execution Time

NonI-Optimilzed — ' ' '
Optimized EXXXX other cases are
9% - 20%

270.64s vs. 203.37s,
25% reduced

| ———————

.,,,,,‘
%! $

A

S/
%

A

AN\
%%

N/
%

\\/
%%%

Execution Time (seconds)

0303,

AW A

AN\
%%

N/
%

AL

N\
Yo%

0

€ oSF _pOF W &F
= \o@i \c,v‘i‘i @‘5? . g,oi - @02 = :\GOP; a 230“? =
ORI AN e N RPN (O ORI ORI

Execution Configuration

Speedup

Non-Optimized —+—
Optimized ---x---

Number of CPUs

Summary

We formalized the Grid workflow composition problem based on the
STRIPS language

We presented a novel ADD graph based algorithm for automatic
composition of high quality Grid workflows: portable, fault tolerant
support, optimized.
Our approach
~ provides a general solution for automatic Grid workflow composition
-~ can generate alternative workflows automatically
~ considers workflow optimization
~ can compose workflows with branches and loops

To the best of our knowledge, ASKALON provides the only widely
used workflow systems with a general solution for automatic
workflow composition

-~ others are built for demonstration of concepts
Future work
~ partially known initial state

Thank you

& For more information:

+ ASKALON: www.askalon.org

<+~ AGWL: www.askalon.org/agwl

http://www.askalon.org
http://www.askalon.org
http://www.askalon.org/agwl
http://www.askalon.org/agwl

