

Demo and Poster Session

Erwin Laure KTH

10 Demos

 Laboratory for Virtual Experimentation in Virology and Bioinformatics ACC CYFRONET AGH

- Grid Development Tools
 University of Marburg
- The Planck Process Coordinator workflow engine on the Grid Leibniz Supercomputer Centre
- Support for cooperative experiments in VL-e: from scientific workflows to knowledge sharing University of Amsterdam
- Interactive Simulations on the Grid *Leibniz Supercomputer Centre*

- UNICORE 6 A European Grid Technology Juelich Supercomputing Centre
- Scientific Workflows in the UNICORE Rich Client Juelich Supercomputing Centre
- Jawari A Grid Benchmarking and Monitoring Service for Grid Assessment Fraunhofer Institut ITWM
- DORII Deployment of Remote Instrumentation Infrastructure Ludwig-Maximilians-Universität München
- The C3-Grid Project: Seamless Volume-optimized Access to Federated Climate Data Technische Universität Dortmund

VL vl introduction

result

ViroLab Virtual Laboratory Demo – HPDC 2009 ACC CYFRONET AGH

1/2

Scientific aspects and solution

Scientific issues

- Heterogeneous computational and data resources
- Expressiveness vs simplicity
- Provenance of results and result reuse
- Collaboration (share data, knowledge and resources but preserve security)


```
require 'cyfronet/gridspace/goi/core/g_obj'
drs =
GObj.create('org.virolab.DrugRankingSystem2')
mut = 'P1M I2L S3T P4Q E6G V10N K11F'.split(` `)
ranking = drs.drs('ANRS', 'rt', mut)
puts ranking
```

Applications

- Virtual Patient Experiment Pilot ViroLab application
- Early Protein Folding
- Computational chemistry apps
- -Data mining with WEKA

Links to remember

http://www.virolab.org/ http://virolab.cyfronet.pl/ http://gs.cyfronet.pl/

Universität Marburg

Grid Development Tools http://mage.uni-marburg.de

- Grid Service Development
- Certificate Management
- Grid Browser

- Workflow Orchestration
- Workflow Execution
- Workflow Monitoring

Kay Dörnemann, Tim Dörnemann, Ernst Juhnke and Prof. Dr. Bernd Freisleben

Demonstrators & Development Team

Kay Dörnemann
<u>doernemk@mathematik.uni-marburg.de</u>
Full-time research assistant
Research interests:
Grid Computing in combination with P2P-Computing
Grid Tools, responsible: Grid Service Development,
Certificate Management, Grid Management

Tim Dörnemann

doernemt@mathematik.uni-marburg.de

Full-time research and teaching assistantResearch interests:BPEL-based Workflow Modeling and Execution inGrid and Cloud Environments

Ernst Juhnke

ejuhnke@mathematik.uni-marburg.de Full-time research assistant Research interests: •BPEL-based Workflow Modeling and Execution in Grid and Cloud Environments

Staff Developers:

- •Kay Dörnemann
- •Tim Dörnemann
- •Ernst Juhnke
- Roland
- Schwarzkopf
- •Thomas Friese
- •Matthew Smith
- •Steffen Heinzl
- •Markus Mathes
- •Dominik Seiler

Students

- Marian HarbachFabian Schwarzer
- •Stanimir Dimitrov
- •Sebastian Kirch

Today ´s Demonstration

- Tool Support for the Entire Grid Software Development and Execution Lifecycle
- Live demonstration of selected tools
 - Grid Service Development (Service Generator)
 - Workflow Orchestration
 - Workflow Execution
 - Workflow Monitoring
 - Certificate Management
 - Grid Browser

 Visual Grid Service
 Orchestration (BPEL) and BPEL Workflow Engine

The Planck Process Coordinator workflow engine on the Grid

LRZ: Arthur Carlson, Ilya Saverchenko, Jarno Laitinen, ... MPA (ProC): Torsten Enßlin, Wolfgang Hovest, Thomas Riller, ... AEI (GAT): Alexander Beck-Ratzka, ...

vl·e

virtual laboratory for e-science

Cooperative experiments in VL-e: from scientific workflows to knowledge sharing

S.Koulouzis(1) Z.Zhao (1) V. Guevara(1) A. Wibisono(1) A. Belloum(1) M. Bubak(1,2) B. Hertzberger(1)

(1) Informatics Institute, University of Amsterdam, The Netherlands (2) Institute of Computer Science Kruislaan 404

Kruislaan 404 1098 SM Amsterdam

T: +31 20 525 7869 F: +31 20 525 7978

E: mieke.van.den.berg@vl-e.nl I: www@vl-e.nl

Complex Scientific experiments model

vl·e

Tools to support Cooperative experiments in VL-e

- Virtual resource Browser http://staff.science.uva.nl/~ptdeboer/vl
- WSRF Grid-enabled workflow system http://staff.science.uva.nl/~gvlam/wsvlam/
- A WfBus for interoperability of scientific workflows. http://staff.science.uva.nl/~zhiming/workflowbu

Hybrid-bAsed Match-Maker for Resources http://pc-vlab19.science.uva.nl:8081/ws-hamm

vl·e

virtual laboratory for e-science

virtual laboratory for e-science

From myexperiment to the Grid

SigWin-detector: is a grid-enabled workflow application that takes a sequence of numbers and a series of window sizes as input and detects all significant windows for each window size using a moving median false discovery rate (mmFDR) procedure.

A significant window is a window in the input sequence for which the median value is significantly higher than expected, if assumed that the ordering of the numbers in the input sequence is random.

The results of a SigWin-detector analysis are summarized in a graph called SigWinmap. In the special case that the input sequence is a trancriptome map, the significant windows are called RIDGES and the output graph is called a RIDGEOGRAM.

SigWin-detector runs under the WS-VLAM workflow management system.

myexperiment web site

DEMO: Interactive Simulations on the GRID

Dr. Helmut Satzger Dr. Ferdinand Jamitzky

Remote Visualisation:

HAL

Connect to remote server

Utilise remote CPU power

Vistenalez

vglconnect

- Utilise remote GPU power
 - (only send screenshots to client)

Example: Interactive Simulations

A European Grid Technology

http://www.unicore.eu

Jason Milad Daivandy

j.daivandy@fz-juelich.de

Jülich Supercomputing Centre (JSC)

A few facts

- UNiform Interface to COmputing Resources
 - seamless, secure, and intuitive Grid middleware
- In continuous development since 2002 in several EU projects
- Open Source community development since Summer 2004
 - BSD license
 - hosted on SourceForge

UNIC@RE 6

Guiding Principles, Implementation Strategies

- **Standards-based**: OGSA-conform, WS-RF 1.2 compliant
- Open, extensible Service-Oriented Architecture (SOA)
- Mature Security: X.509, proxy and VO support
- Tightly integrated workflow support, highly extensible by different workflow languages and engines
- Application integration mechanisms on the client, services and resource level
- Variety of **clients**: graphical, command-line, API, portal, etc.
- Quick and **simple installation** and configuration
- Support for many operating and batch systems
- Implemented in Java to achieve platform-independence

UNICORE Rich Client (URC)

UCC – Commandline Client

>ucc −h		
UCC version 1.2-SNAPS	ihot	
Vsage: ucc <command/>	[OPTIONS] <args></args>	
The following command	ls are available:	
Data management:		
ls	– list a storage	
copy-file-status	 check status of a copy-file 	
get-file	– get remote files	
find	– find files on storages	
resolve	- resolve remote location	
copy-file	– copy remote files	
c9m-get-file	– get remote files	
put-file	 puts a local file to a remote server 	
General:		
connect	- connect to UNICORE	
list-applications	– lists applications on target systems	
list-jobs	– list your jobs	
list-sites	– list remote sites	
c9m-system-info	- Checks the availability of services.	
Job execution:		
run	- run a job through UNICORE 6	
get-status	– get job status	
abort-job	- abort a job	
batch	- run ucc on a set of files	
get-output	– get output files	
Other:		
shell	- Starts an interactive UCC session	
loadtest	- load tests services	
issue-delegation	- Allows to issue a trust delegation assertion	
wsrf	- perform a WSRF operation	
run-groovy	– run a Groovy script	
Workflow:		
c9m-submit	- submit a workflow to Chemomentum	
c9m-trace	- trace info on a workflow in Chemomentum	
c9m-control	- control a workflow in Chemomentum	
c9m-workflow-info	- lists info on workflows in Chemomentum	
Enter 'ucc <command/>	-h' for help on a particular command.	
> _		
		•
🙈 🛯 🖷 UCC		1656

Life Science Workflow

7

UNIC I In use – some examples

Supercomputing

- DEISA (EU)
- Clinical Supercomputing (USA)
- SKIF-GRID (Russia, Belarus)
- National Grids (Germany)
 - D-Grid
 - AeroGrid
 - BIS-Grid

Commercial

- T-Systems SfR
- ▶ 52° North

software, source code, documentation, tutorials, mailing lists, community links, and more:

http://www.unicore.eu

Goal

Support for Quality of Service Assessment and Assurance in Grids

Components

- Benchmarking and Monitoring Service
- Performance Prediction Tools

Characteristics

- Open Source
- Free of Charge
- Extensible
- Multiplatform
- Focused on Grid Services

- In production for 3 years
- Simple to use
- Mimics an End-user

How it works

Deployment of Remote Instrumentation Infrastructure

Remote Instrumentation Infrastructure

Applications: Oceanographic-, Earthquake-, Experimental-Science, Coastal-Observation

Middleware: adding Instrument Element support, basing on gLite, User/Developer support: VCR and g-Eclipse

Resources: Gilders, Floaters, Earthquake-Sensors, Cameras, Synchrotron, CEs, SEs, ...

Network: GEANT, Internet, Iridium, ...

GEFÖRDERT VOM

The C3-Grid Project Seamless Volume-optimized Access to Federated Climate Data

B. Fritzsch, S. Kindermann, <u>A. Papaspyrou</u>, and the C3-Team

🥭 Deutsches Klimarechenzentrum

J technische universität dortmund

Grid Computing in Climate Research

- Earth System Science Applications
 - short term weather forecast
 - subsystem modelling
 - stormtrack analysis
- Current Situation
 - no coherent working environment
 - manual staging and transportation of relevant data
 - problem of heterogeneous resources, distributed data and different access policies
- Identfied requirements for C3Grid
 - fairly typical Grid Use Cases
 - but: some special characteristics
 - comprehensive metadata support
 - special structure of data

Collaborative Climate Community Data and Processing Grid (C3Grid):

Alexander Papaspyrou

GES 2007

Alexander Papaspyrou

GES 2007

5 Posters

 Maintaining Reference Graphs of Globally Accessible Objects in Fully Decentralized Distributed Systems Bjoern Saballus, Thomas Fuhrmann

- Adaptive Run-time Prediction in Heterogeneous Environments Christian Glasner, Jens Volkert
- Performance Prediction Based on Hierarchy Parallel Features Captured in Multi-Processing System Jiaxin Li, Feng Shi, Ning Deng
- CLOUDLET: Towards MapReduce Implementation on Virtual Machines Shadi Ibrahim, Hai Jin, Bin Cheng, Song Wu, Haijun Cao, Li Qi
- Investigating Software Transactional Memory on big SMP machines *Ruibo Wang*