
Li Yu, Christopher Moretti
Scott Emrich, Kenneth Judd*, Douglas Thain

University of Notre Dame, *Stanford University

Distributed systems are hard to use effectively.
Multicore distributed systems are even harder!
An abstraction is a regular structure that can be
efficiently scaled up to very large problem sizes.
We have implemented two abstractions – AllPairs
and Wavefront -- with applications in biometrics,
bioinformatics, and economics.
Three Technical Results From Paper:
◦ N-core CPU != N x 1-core CPUs
◦ Abstractions make it easy to model performance

accurately.
◦ Aggressive failure detection is needed in order to scale

up to large numbers of CPUs.

How should the workload
be broken up into jobs?
How should the data be
distributed to each node?
How many nodes should
be used?
Will the network be a
bottleneck?

Computer

Computer

Computer

Computer

Disk

Disk

Disk

Disk

Network

How should work be
divided among threads?
Should we use message
passing or shared
memory?
How many CPUs should
be used?
Will memory access
present a bottleneck?

RAM

Core

Core

Core

Core

Cach
e

Cach
e

Cach
e

Cach
e

An abstraction is a declarative framework
that joins together sequential processes
and data structures into a regularly
structured parallel graph.
Our implementations distributed very
large workloads on multicore CPUs,
clusters, and clusters of multicore CPUs.
Not a general-purpose language, but a
highly scalable implementation of a
specific pattern.
(We first introduced the AllPairs abstraction for
conventional clusters at IPDPS 2008.)

F
F
F

F
F
F

1CPU Multicore Cluster Grid Supercomputer

Here is my function: F(x,y)
Here is a folder of files: set S

set S of files

F

F FF

F
F
F
F

F
F
F
F

F F
F F
F
FF

F
F
F

F
F
F

F
F
F

F
F
F

F
F
F

F
F
F

binary function F

0.27 0.55 1.00 0.67

0.750.330.190.14

0.56 0.73 0.12

A3A2A1A0

1.000.840.12B3

B2

B1

B0 F

F

Compare 4000 irises images of 1MB to each
other using a custom function.
The comparison function converts each image
into a iris code, and then computes the
Hamming distance between the two.
Each comparison takes about 1 second.
CPU time under sequential computation:

185 DAYS! 30 hours
With 200 machines

R[4,2]

R[3,2] R[4,3]

R[4,4]R[3,4]R[2,4]

R[4,0]R[3,0]R[2,0]R[1,0]R[0,0]

R[0,1]

R[0,2]

R[0,3]

R[0,4]

Fx

yd

F
x

yd

Fx

yd

Fx

yd

F
x

yd

F
x

yd

F

F

y

y

x

x

d

d

x F Fx

yd yd

Computing a complete alignment between
two very large DNA sequences.
Compute a 100 by 100 matrix, where each
cell is itself a large dynamic programming
problem.
CPU time under sequential computation:

13 DAYS! 8.3 hours
With 80 machines

A game theory problem in which we compute
all possible actions of two competing
companies over time.
A 500 by 500 matrix where each cell requires
7.6 seconds to compute the Nash equilibrium.
CPU time under sequential computation:

22 DAYS! 2.9 hours
With 180 machines

Responsibilities of the Multicore Master:
◦ Divide work for each core.
◦ Use multiple cores simultaneously.
◦ Manage the file system cache.

Multicore
Master

Core
0

Core
1

Core
2

Core
3

F
FF
F FF

Responsibilities of the Distributed Master:
◦ Divide entire problem into smaller pieces.
◦ Decide how many nodes to use.
◦ Recover from failed jobs efficiently.

Distribute
d Master ...

Multicore
Master

...

F
FF
F FF

F
FF
F FF

F
FF
F FF

Multicore
Master

Multicore
Master

F
FF
F FF

F
FF

F
FF
F FF

F
FF
F FF... ...

Complete Input

Parallel Languages: MPI, OpenMP
◦ General purpose languages can express arbitrary

problems, but require experts to scale up to large
sizes, and are not easily made fault tolerant.

Workflow Languages: Dagman, Swift, Taverna
◦ Designed and optimized to run irregular graphs

of programs that deal with plain files.
Abstractions solve very specific flexibly divisible
problems with seamless multicore integration.

Other Kinds of Abstractions: Map-Reduce
◦ Each abstraction solves a different category of

problems. Is there a “menu” of 10 abstractions?

An N-core CPU should not be
treated as N x 1-core CPUs.
Abstractions make it easy to
model performance accurately.
Aggressive failure detection is
needed in order to scale up to
large numbers of CPUs.

(See paper for more results.)

Core 0 Core
1 CPU 0

CPU 2

CPU 4

CPU 6 CPU 7

CPU 5

CPU 3

CPU 1

??
==

Core 0 Core
1

Core 0 Core
1

Core 0 Core
1

Single Core

Dual Core

Sub-problem

A
A A

A

A
BA
B

A
A A

A B
B B

B

Block Width=2

A

AA

A
A A
A A

B
B

BB AA
A

A

A A B B

Cluster Mode:
High dispatch latency.
High throughput.

Local Mode:
Low dispatch latency.
Limited throughput.

R[0, 5]

R[0, 4]

R[0, 3]

R[0, 2]

R[0, 1]

R[0, 0] R[1, 0] R[2, 0] R[3, 0] R[4, 0] R[5, 0]

F

FF

F

F

F

F

F

FF

F

F

F

F

F

R[0, 5]

R[0, 4]

R[0, 3]

R[0, 2]

R[0, 1]

R[0, 0] R[1, 0] R[2, 0] R[3, 0] R[4, 0] R[5, 0]

F

?F

F

F

F

F

?
?F

F

F

F

F

F

F ?
?

?F
F

F

Keep statistics on function execution
times.

When a work unit runs 10x longer
than the average, abort and
reschedule it.

Prefer to run on fast machines.

Heterogeneous
cluster allows for

super-linear
speedup!

Heterogeneous
cluster allows for

super-linear
speedup!

Distributed systems are hard to use effectively.
Multicore distributed systems are even harder!
An abstraction is a regular structure that can be
efficiently scaled up to very large problem sizes.
We have implemented two abstractions – AllPairs
and Wavefront -- with applications in biometrics,
bioinformatics, and economics.
Three Technical Results From Paper:
◦ N-core CPU != N x 1-core CPUs
◦ Abstractions make it easy to model performance

accurately.
◦ Aggressive failure detection is needed in order to scale

up to large numbers of CPUs.

Li Yu
◦ lyu2@nd.edu
Douglas Thain
◦ dthain@cse.nd.edu
Cooperative Computing Lab
◦ http://www.cse.nd.edu/~ccl

