Modeling User Submission Strategies on Production Grids

Diane Lingrand, Johan Montagnat, Tristan Glatard Sophia-Antipolis, FRANCE University of Lyon, FRANCE

HPDC 2009 München, Germany

The EGEE production grid

http://www.eu-egee.org

- Huge computing power and data storage facility:
- > 80,000 CPUs
- > 250 computing centers worldwide
- > 200,000 jobs/day
- > 9,000 registered users
 - Toll: latency and faults

Variable latencies

[Lingrand et al, JSSPP'09]

Faults

• 35% of faults, various distributions

Based on 33 millions of EGEE jobs, 2005-2007 [Lingrand *et al*, JSSPP'09]

EGEE: a complex system

Quality of Service for grid applications

Assumption: infrastructure only provides best-effort

 Analogy with TCP/IP model

[Meng et al IPDPS'09]

=> Need for user-level submission strategies

Outline

Introduction

- Model and evaluation of 3 strategies
 - Single resubmission after timeout
 - Multiple submissions

Ut [CCGrid'07] [Casanova, JGC 07]

- Delayed resubmission

• Cost criterion

Conclusion

Modeling & evaluation method

- Infrastructure behavior
 - Latency R is a random variable with c.d.f F_{R}
 - Some jobs (outliers, fraction ρ) have infinite latency

- Submission strategies modeling
 - Expectation & stdev of total latency J w.r.t. R and ρ
- Evaluation
 - Based on 11,000 probe jobs (Sept. 06 Feb 08) ⁸

Single resubmission: modeling

- Job timed-out => canceled and resubmitted
- Expectation of total latency time:

$$E_J(t_\infty) = \frac{1}{\tilde{F}_R(t_\infty)} \int_0^{t_\infty} (1 - \tilde{F}_R(u)) du$$

• E_{J} has a min <=> \tilde{F}_{R} is heavy-tailed

Single resubmission: evaluation

• Total latencies

	Withou outliers	t With outliers				
week	mean	mean	E_J	σ_R	σ_J	$\Delta \sigma$
number	< 104s	with 10 ⁴ s		$< 10^{4} { m s}$		
2006-IX	570s	1042s	471s	886s	331s	-63%
2007/08	469s	2089s	500s	723s	358s	-51%
2007-36	446s	2739s	510s	748s	370s	-51%
2007-37	506s	3639s	617s	848s	486s	-43%
2007-38	447s	2739s	531s	682s	399s	-42%
2007-39	489s	3533s	596s	741s	482s	-35%
2007-50	660s	2341s	628s	1046s	475s	-55%
2007-51	478s	1716s	517s	510s	353s	-31%
2007-52	443s	1685s	476s	582s	334s	-43%
2007-53	449s	1977s	482s	678s	330s	-51%
2008-01	434s	1678s	499s	317s	339s	+07%
2008-02	418s	1568s	441s	547s	278s	-49%
2008-03	538s	1484s	419s	1196s	269s	-78%

Conclusions

- Manages to filter out outliers
- Reduces standard-deviation

Multiple resubmission: modeling

- Submit b copies of the job
 With timeout on the collection
- Expectation of total latency time

$$E_{J}(t_{\infty}) = \frac{1}{\tilde{F}_{R}(t_{\infty})} \int_{0}^{t_{\infty}} (1 - \tilde{F}_{R}(u)) du$$

$$\begin{bmatrix} \tilde{F}_{R}(t) \text{ replaced by } 1 - (1 - \tilde{F}_{R}(t))^{b} \\ \text{b jobs have latency > t} \\ \text{At least 1 job has latency < t} \end{bmatrix}$$

$$E_{J}(t_{\infty}) = \frac{1}{1 - (1 - \tilde{F}_{R}(t_{\infty}))^{b}} \int_{0}^{t_{\infty}} (1 - \tilde{F}_{R}(u))^{b} du$$
11

Multiple resubmission: evaluation

- E₁ has a minimum for all values of b
- Slope after minimum decreases as b increases ¹²

Multiple resubmission: evaluation

Mean

Stdev

- Strong improvements of mean and stdev
- Goes smoother as b increases

Delayed resubmission strategy

• Goal: limit the number of simultaneous job copies

3t_o

 $2t_0 + t_{\infty}$

- Job submitted at time t with timeout t_x
- Copy submitted at $t+t_0$

 $\frac{\text{Constraints}}{0 < t_{0} < t_{m}}$

t_ < 2t_

• Expectation of total latency:

. . .

$$\begin{split} E_{J}(t_{0},t_{\infty}) &= \frac{1}{\tilde{F}_{R}(t_{\infty})} \int_{0}^{t_{\infty}} u \tilde{f}_{R}(u) du + \frac{\tilde{F}_{R}(t_{0})}{\tilde{F}_{R}(t_{\infty})} \int_{0}^{t_{\infty}-t_{0}} u \tilde{f}_{R}(u) du \\ &+ \frac{t_{0}}{\tilde{F}_{R}(t_{\infty})} + t_{0} \frac{\tilde{F}_{R}(t_{\infty}-t_{0})}{\tilde{F}_{R}(t_{\infty})} + t_{0} \frac{\tilde{F}_{R}(t_{0})\tilde{F}_{R}(t_{\infty}-t_{0})}{\tilde{F}_{R}^{-2}(t_{\infty})} - t_{0} + \int_{0}^{t_{\infty}-t_{0}} u \tilde{f}_{R}(u) du \\ &- \frac{t_{0}}{\tilde{F}_{R}(t_{\infty})^{2}} \int_{0}^{t_{\infty}-t_{0}} \tilde{f}_{R}(u+t_{0}).\tilde{f}_{R}(u) du - \frac{1}{\tilde{F}_{R}(t_{\infty})} \int_{0}^{t_{\infty}-t_{0}} u \tilde{f}_{R}(u+t_{0}).\tilde{f}_{R}(u) du \end{split}$$

Delayed resubmission strategy

• Minimal value of E

Single resubmission: $E_J = 471s$ Multiple resubmissions (b=2): $E_J = 314s$ Delayed resubmission: $E_I = 431s$

Total latency of delayed VS mult. subm.

16

Outline

Introduction

- Model and evaluation of 3 strategies
 - Single resubmission after timeout
 - Multiple submissions
 - Delayed resubmission

• Cost criterion

Conclusion

Cost of the strategies

Based on total middleware time

• When N_" copies are submitted in parallel:

$$\Delta_{cost} = N_{//} * \frac{E_J(\text{with}N_{//})}{E_J(\text{ with } b = 1)}$$

Cost of delayed VS multiple submission

$N_{//}$	$\frac{t_{\infty}}{t_0}$	E_J	Δ_{cost}	$N_{//}$	E_J	Δ_{cost}	$N_{//}$	E_J	Δ_{cost}
1		471s	1	2	314s	1.3	16	180s	6.1
1	1.1	458s	0.97	3	268s	1.7	17	178s	6.4
1	1.15	453s	0.96	4	245s	2.1	18	177s	6.7
1	1.2	447s	0.95	5	230s	2.4	19	175s	7.1
1	<u>1.25</u>	443s	0.94	6	220s	2.8	20	174s	7.4
1.07	1.3	438s	1.00	7	212s	3.1	30	166s	10
1.18	1.4	432s	1.09	8	205s	3.5	40	161s	14
1.32	1.5	434s	1.22	9	200s	3.8	50	158s	17
1.36	1.6	445s	1.29	10	196s	4.2	60	156s	20
1.40	1.7	458s	1.36	11	192s	4.5	70	155s	23
1.41	1.8	462s	1.38	12	189s	4.8	80	154s	26
1.43	1.9	466s	1.42	13	186s	5.1	90	153s	29
1.45	2.0	469s	1.44	14	184s	5.5	100	152s	32
				15	182s	5.8			

delayed resubmission strategy

multiple resubmission strategy

Cost of delayed VS multiple submission

Conclusion

- Need for local user-level submission strategies
 - Modeling
 - Evaluation
- Studied 3 submission strategies
 Single, multiple, delayed
- Cost metric based on total middleware time
- Conclusions
 - Multiple resubmission reduces total latency at a high cost (b=2 => Δ_{cost} = 1.3)
 - Delayed strategy improves total latency at a lower cost than single resubmission
- Future work: do it live on real applications

Thank you !

Questions ?

Back slides

Future work

- Implementations in real applications

 Need for latency estimates
- Using data from the Grid Observatory
 - http://www.grid-observatory.org
 - non sparse data
 - non limited to the biomed VO

Job's life cycle on EGEE

EGEE Workload Management System

Data

- probe jobs: /bin/hostname
- periodically submitted to maintain constant load
- 11,000 traces acquired
 - on the biomed VO
 - between September 2006 and February 2008