High Performance Wide-area Overlay using Deadlock-free Routing

Ken Hironaka, Hideo Saito, Kenjiro Taura The University of Tokyo June 12th, 2009

Parallel and distributed computing in WANs

- Grid environments have become popular platforms
 - Grid5000, DAS-3, InTrigger
 - Helped by greater WAN bandwidth
- Communication is getting increasingly important
 - CPU-intensive applications
 - More communication intensive
 - e.g.: Model-checking
 - Data-intensive applications
- The design/implementation of communication libraries is crucial

Application overlays for communication libraries

WAN connectivity

- NAT, Firewall
- SmartSockets [Maassen et al. '07]

Scalability

- Few connections as possible
- Host main memory constraints
- Stateful firewall session constraints

High performance

Avoid network contention at bottlenecks

WAN overlay Requirements for parallel and distributed computing

- Low Transfer/routing overhead
 - Overlay performance does matter
 - Not only latency, but also bandwidth

- "safe" overlays
 - NO Memory overflow
 - NO Communication deadlocks

Our contribution

- Overlay for effective parallel and distributed computing on WANs
 - Low transfer/routing overhead
 - No memory overflow/deadlocks
 - Efficient deadlock-free routing for heterogeneous networks
- Experiment on a large scale WAN environment
 - 4 to 7 clusters: up to 290 nodes
 - Higher performance for collective communication

Problem Setting

- Introduction
- Problem Setting
- Related Work
- Proposal
- Evaluation
- Conclusion

Description of our overlay setting

- Multi-cluster environment (LAN + WAN)
- Latency and Bandwidth are heterogeneous
 - $-100[us] \sim 100[ms]$
 - 10 [Mbps] ~ 10[Gbps]
- Heavy stress on forwarding nodes that buffer packets
- A naïve implementation will have 2 outcomes
 - Memory overflow in intermediate nodes
 - communication deadlock among nodes

No. 1: Memory overflow

When a node buffers packets
 without regards to its free buffer size

Thus, all nodes must use fixed size buffers

8

No. 2: Deadlocks with naïve flow control

- Simple flow control solution
 - stop receiving once your buffer is full
 - Feeds back to the sender to tune the send rate
 - Possibility of a deadlock

A Deadlock Example

When multiple transfers coexist :

Transfers will become dependent each other to make progress

4 transfer example

- Link A → Link B
- Link B \rightarrow Link C
- Link $C \rightarrow Link D$
- Link D → Link A

Transfers wait on each other

⇒deadlock

The source of the deadlock

- Cycle in the link dependency graph
- Deadlock free routing is necessary
 - Restrict routing paths so that deadlocks cannot occur
- They **Do** Happen!
 - 40-node LAN, 1 M buffers
 - 0.1 connection density graph
 - 5MB all-all operation

Additionally...

Existing deadlock-free routing algorithms
 do not account for the underlying network

 In WANs, we must use underlying network information for efficient routing

Related Work

- Introduction
- Problem Setting
- Related Work
- Proposal
- Evaluation
- Conclusion

Existing WAN overlays

- Do not consider problems like buffer overflow and deadlocks
- RON (Resilient Overlay Network) [Andersen et al. '01]
 - UDP overlay network among all nodes
 - UDP interface to the user
 - Communication reliability and flow control are left to the user
- DiskRouter [Kola et al. '03]
 - File transfer overlay
 - When buffer usage reach a threshold, stop receiving
 - Possibility of deadlocks

Flow Control for Overlays

- UDP Overlay + End-End Flow-control
- [Kar et al. '01]
 - ACK on every packet sent
 - ACKs piggyback link congestion information
- Spines : [Amir et al. '02]
 - Link congestion information is shared periodically
 - Sender tunes its rate based on congestion of its path
- Pros:
 - Eliminate burden on forwarding nodes
- Cons:
 - Isn't this re-implementing TCP?
 - A lot of parameter tuning
 - hard to yield maximum bandwidth on path: (30 % utilization)

Our work: Use TCP + flow-control at forwarding nodes + deadlock free routing

Deadlock-free Routing

- Restrict routing paths to prevent deadlocks
 - Not suitable for WANs
- Algorithms for parallel computer interconnects:
 - Assume "regular" topologies
 - [Antonio et al. '94]
 - [Dally et al. '87, '93]
- Algorithms for general graphs:
 - Do not account for underlying network
 - Constructed paths are suboptimal
 - Up/Down Routing [Schroeder et al. '91]
 - Ordered-link Routing [Chiu et al. '02]
 - L-Turn Routing [Koibuchi et al. '01]

Proposal

- Introduction
- Problem Setting
- Related Work
- Proposal
- Evaluation
- Conclusion

Proposal Overview

- Basic Proposal
 - 1. Construct a TCP overlay
 - 2. Apply deadlock-free routing constraints
 - 3. Calculate routing paths

Optimizations using network information

Basic Overlay Overview

- Only requires a connected overlay network using TCP connections
 - e.g.: random graph overlay construction

- Send in packets:
 - Predefined packet sizes
- End-End reliable communication :
 - FIFO transfer
 - Do NOT drop packets

Forwarding Procedure (1/2)

- Define the following per TCP connection
 - Fixed send buffer
 - 1-packet receive buffer
- Transfer procedure

receive packet on receive buffer

 Move to send buffer of connection to be forwarded

 If send buffer is full, stop receiving on it

Forwarding Procedure (2/2)

- When multiple transfers contest for single link
 - They will make progress in round-robin fashion
- Transfers will be blocked
 - Deadlock-free routing
 - ⇒ **No** deadlocks

Deadlock-free Routing Up/Down Routing [Schroeder et al. '91]

- BFS from root node
 - Assign IDs in ascending order
- Determine link arrow

Arrow points to the younger ID

- Define link traversal
 - UP: in arrow direction
 - DOWN: against arrow direction
- Routing path restriction:
 - Cannot go UP after DOWN

Determined independently from underlying network

DOWN

Routing Table Calculation

- Modification to Dijkstra's Shortest Path
 - Routing Table Calculation: O(NlogN) for N nodes

2009/6/15

23

Proposal Overview

Optimizations using network information

- Inter-node Latency Matrix
- Connection bandwidth information

- Basic Proposal
 - Construct a TCP overlay

Localityaware construction

- Apply deadlock-free routing constraints

Calculate routing paths,

Throughputaware Path calculation **Locality-**

constraints

Locality-aware overlay construction

[Saito et al. '07]

- "Routes to far nodes can afford to make detours"
- Connections choice
 - Low prob. With far-away nodes
 - High prob. With near nodes

Reduce connections without performance impact

Up/Down Routing Optimizations

- BFS id assignment is problematic in multi-cluster settings
- Many nodes are reachable only with UP → DOWN paths
- Nodes with small IDs within cluster
 - UP direction traversal includes a high-latency WAN connection
 - They will use WAN links to reach intra-cluster nodes

Proposed Up/Down Routing

DFS ID assignment

traverse priority to low latency child

Rationale

- Reduce UP→DOWN paths
- Intra-cluster nodes can be reachable only using UP or DOWN traversals
- Reduce unnecessary WAN hops

Deadlock-free restriction comparison

Reduce restrictions banning intra-cluster links

Routing Metric

- Give weight to throughput of entire path
 - Sum of inverse of bandwidth of used links

$$Cost = \sum_{i=1}^{N} \frac{1}{B_i}$$

Evaluation

- Introduction
- Problem Setting
- Related Work
- Proposal
- Evaluation
- Conclusion

Deadlock-free Routing Overhead

- Compare deadlock-free vs. deadlock-unaware routing
 - ordered-link
 - Up/Down
 - Proposed Up/Down
- Compared hops/bandwidth for all calculated paths
- Simulation
 - L2 topology information of the InTrigger Grid platform
 - 13 clusters (515 nodes)

- 1. Vary connection density
- 2. Computed routing tables
- 3. Evaluate result using topology information

Num. of hops for all paths

- Very small difference for average hop count
- Proposed Up/Down has comparable max. hop count

Minimum Path bandwidth Ratio

- Other deadlock-free algorithms take unnecessary WAN-hops
- 200 P/8/15 Proposed optimization avoids taking WAN-hops

Deadlock-free routing effect on path restriction and latency

Comparison to direct sockets

- 7 Real clusters on InTrigger (170 nodes)
 - Connection density: 9%
- Routing Metric: Latency over path

Direct vs. Overlay Latency

2009/6/15

Up/Down uses WAN links even for LAN communication

Overlay Throughput Performance

- A wide range of environments
 - 1 Gigabit Ethernet LAN (940 [Mbps])
 - Myrinet 10G LAN (7 [Gbps])

With varying number of intermediate nodes

Direct vs. overlay throughput

Able to attain close to direct socket throughput

Collective Communication

Our overlay outperforms direct sockets even with deadlock-free constraints

Evaluation

- Gather, All-to-All
- Varying message size, and connection density

Environment

- LAN: 1-switch (36 nodes), hierarchical (177 nodes)
- WAN: 4 clusters (291 nodes)

Gather time

Gather with multiple clusters Effect by mitigating 4 cluster (291 nodes)

All-to-All

- Large-scale environments have bottlenecks
 - Hierarchical cluster
 - 177 nodes
 - 4 clusters connected on WAN
 - 291 nodes

All-to-All performance

- Sparse overlays perform better due to packet loss avoidance
- For hierarchical cluster, packet loss occurs at switches
- For multi-cluster setting, WAN becomes source of packet loss

Conclusion

- Introduction
- Problem Setting
- Related Work
- Proposal
- Evaluation
- Conclusion

Conclusion

- Overlay for effective parallel and distributed computing on WANs
 - Low transfer overhead
 - No memory overflow/deadlocks
 - Use network information to mitigate routing overhead
- Evaluation on simulation/LANs/WANs
 - Low overhead relative to deadlock-unaware routing
 - Throughput/latency comparable to direct sockets
 - Outperforms direct sockets for collective communication
- Future Work
 - Allow dynamic changes in overlay topology and routing

Questions?

Ken Hironaka

kenny@logos.ic.i.u-tokyo.ac.jp

Taura Research Lab

www.logos.ic.i.u-tokyo.ac.jp