
Introduction
Parallel XML

Conclusions

Performance Enhancement with Speculative
Execution Based Parallelism for Processing

Large-scale XML-based Application Data

Michael R. Head and Madhusudhan Govindaraju

Grid Computing Research Laboratory

Department of Computer Science

Binghamton University

http://www.cs.binghamton.edu/~{mike,mgovinda}

HPDC 2009

Thursday, June 11, 2009

1 / 40

http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike/
http://www.cs.binghamton.edu/~mike
http://www.cs.binghamton.edu/~mgovinda
http://grid.cs.binghamton.edu
http://www.cs.binghamton.edu
http://www.binghamton.edu
http://www.cs.binghamton.edu/~mike
http://:www.cs.binghamton.edu/~mgovinda
http://www.lrz-muenchen.de/hpdc2009/

Introduction
Parallel XML

Conclusions

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

2 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

3 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

XML

Text based (usually UTF-8 encoded)

Tree structured

Language independent

Generalized data format

4 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Motivation from SOAP

Generalized RPC mechanism (supports other models, too)

Broad industrial support

Web Services on the Grid

OGSA: Open Grid Services Architecture

WSRF: Web Services Resource Framework

At bottom, SOAP depends on XML

5 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Importance of High Performance XML Processors

Becoming standard for many scientific datasets

HapMap - mapping genes

Protein Sequencing

NASA astronomical data

Many more instances

6 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

XML Performance Limitations

Compared to ‘‘legacy’’ formats

Text-based

Lacks any ‘‘header blocks’’ (ex. TCP headers), so must scan every

character to tokenize

Numeric types take more space and conversion time

Lacks indexing

Unable to quickly skip over fixed-length records

7 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Limitations of XML

Poor CPU and space efficiency when processing scientific data

with mostly numeric data [Chiu et al 2002]

Features such as nested namespace shortcuts don’t scale well

with deep hierarchies

May be found in documents aggregating and nesting data from

disparate sources

Character stream oriented (not record oriented): initial parse

inherently serial

Still ultimately useful for sharing data divorced of its application

8 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Explosion of Data

Enormous increase in data from sensors, satellites, experiments,

and simulations

Use of XML to store these data is also on the rise

XML is in use in ways it was never really intended (GB and large

size files)

9 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

10 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Prevalence of Parallel Machines

All new high end and mid range CPUs for desktop- and

laptop-class computers have at least two cores

The future of AMD and Intel performance lies in increases in the

number of cores

Despite extant SMP machines, many classes of software

applications remain single threaded

11 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

XML and Multi-Core

Most string parsing techniques rely on a serial scanning process

Challenge: Existing (singly-threaded) XML parsers are already very

efficient [Zhang et al 2006]

12 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

13 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Large XML Data
Ubiquity of Multi-processing Capabilities
SAX-based parsing

SAX-style XML parsing

Sequential processing model

Program invokes parser with a set of callback functions

Parser scans input from start to finish

<element attributes...>
content

</element>

Invokes callbacks in file order

startElement()
content()
endElement()

14 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

15 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Token-Scanning With a DFA

DFA-based table-driven scanning is both popular and fast

(or at least performance-competitive with other techniques)

Input is read sequentially from start to finish

Each character is used to transition over states in a DFA

Transition may have associated actions

Supports languages that are not ‘‘regular’’

Commonly used in high performance XML parsers, such as TDX (C)

and Piccolo (Java)

Amenable to SAX parsing

Piximal-DFA uses this approach

16 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

DFA Used in Piximal-DFA

0

1

2

3

4

5

6

7

8

9

10

whitespace

’ < ’

’/’

name start

’ > ’

whitespace

name char

’ = ’

name char

’"’

whitespace

’"’

not ’<’ or ’&’

whitespace

name char

’ > ’

’ < ’

char data

name start

name char

space

’ > ’

17 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Piximal-DFA Implementation Details

mmap(2)s input file to save memory

Uses {length, pointer} string representation

Strings (for tagnames, attribute values) point into the mapped

memory

All the way through the SAX-style event interface

DFA is encoded as two tables

Table of ‘‘next’’ state numbers indexed by state number and input

character

Table of boolean ‘‘action required’’ indicators indexed by

‘‘current’’ state and ‘‘next’’ state

Action required =⇒ a function is called to decode and execute

the required action

DFA table is generated at compile time using a separate generator

program

18 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Parallel Scanning With a DFA?

DFA-based scanning =⇒ sequential operation

Desire: run multiple, concurrent DFAs throughout the input

Generally not possible because the start state would be unknown

19 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Overcoming Sequentiality With an NFA

Problem: start state is unknown

Solution: assume every possible state is a start state

Construct an NFA from the DFA used in Piximal-DFA

1 Mark every state as a start state

2 Remove all the garbage state and all transitions to it

3 Create an queue for each start state to store actions that should be

performed

Such an NFA can be applied on any substring of the input

Piximal-NFA is the parser that does all of this:

Partition input into segments

Run Piximal-DFA on the initial segment

Run NFA-based parsers on subsequent partition elements

Fix up transitions at partition boundaries and run queued actions

20 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Piximal-NFA’s Parameters

split_percent :

The portion of input to be dedicated to the first element of the

partition, expressed as a percentage of the total input length

number_of_threads:

The number of threads to use on a run

The final (100 − split_percent)% of the input is divided evenly

across the remaining (number_of_threads − 1) partitions

The final partition element gets up to number_of_threads − 2 fewer

characters

21 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

22 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Serial NFA Tests

Test hypothesis: the extra work required by using an NFA is offset

by dividing processing work across multiple threads

Run each automaton-parser sequentially and independently

Divide the work as usual, with a range of split_percents and

number_of_threads

Time each component independently

Completely parses the input, generating the correct sequence of

SAX events

The maximum time for all components to complete (plus fix up

time) represents an upper bound on the time Piximal-NFA would

take with components running concurrently

23 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Test conditions

Synthetic data

Arrays of Integers, Strings, Mesh Interface Objects

SOAP encoded

Same as previously presented in benchmarks

Across a cluster (taking mean of results)

Range of input sizes

Range of parameters (split_percent , number_of_threads)

24 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Modest Speedup Scalability for 10,000 Integers

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

25 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Split_Percent Critical for Speedup for 10,000 Integers

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

26 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Inconsistent Speedup Over a Range of Array Lengths

0 10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Array Size

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

27 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Characters in 10,000 Integers in a Range of States

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
20

00
0

40
00

0
60

00
0

28 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Conclusions From Integer Results

Speedup is possible in this case

Choice of split point is critical for achieving any speedup at all

Characters in content sections account for roughly 60% of the

input characters

Input is 117 KB in length

Consists mainly of

...<i>1234</i><i>1235</i><i>1236</i>...

29 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Speedup Improves with Thread_Count for 10,000 Strings

2 3 4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Thread Count

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

30 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Split_Percent Less Critical for 10,000 Strings

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Split Percent

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

31 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Consistent Speedup Over a Range of Input Sizes

0 10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Array Size

P
ot

en
tia

l S
pe

ed
up

Max Speedup
Mean Speedup
Min Speedup

32 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Characters in 10,000 Strings are Mainly in Content

0 1 2 3 4 5 6 7 8 9 10

DFA State

F
re

qu
en

cy

0
40

00
00

80
00

00
12

00
00

0

33 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Conclusions from String Results

This sort of input is much more amenable to this approach

In maximum potential speedup achieved

In number of cases where speedup is > 1

Split point is much less important here

Characters in content sections account for roughly 99% of the

input characters

Input is 1.4 MB in size (though similar results are seen in inputs that

are 117 KB)

Consists mainly of ...<i>String content for the array

element number 0. This is long to test the

hypothesis that longer content sections are better

for the NFA.</i>...

34 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions

Piximal: Parallel Approach for Processing XML
Serial NFA Tests

Conclusions from Serial NFA Test

Shape of the input strongly determines the efficacy of the Piximal
approach

MIO has similar state usage and mix of content and tags as the

integer and Piximal has a similar performance profile there

Piximal works well on inputs with longer content sections

punctuated by short tags

Starting in a content section helps because the ‘<’ character

eliminates a large number of execution paths through the NFA

If ‘>’ could be treated similarly by the parser, starting in a tag

would be less harmful

35 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions
Final Remarks

Outline

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

36 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions
Final Remarks

Conclusions

Scientific applications strain existing XML infrastructure

A parallel parsing approach is necessary to achieve increased

parser performance as document sizes grow

Restricting XML slightly should provide better performance at a low

semantic cost

Piximal’s applicability is dependent on the characteristics of the

input file

37 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions
Final Remarks

Summary

1 Introduction
Large XML Data

Ubiquity of Multi-processing Capabilities

SAX-based parsing

2 Parallel XML
Piximal: Parallel Approach for Processing XML

Serial NFA Tests

3 Conclusions
Final Remarks

38 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions
Final Remarks

Thank you for your time.

39 / 40

http://www.binghamton.edu

Introduction
Parallel XML

Conclusions
Final Remarks

Questions?

40 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Extra Slides

The following slides are additional and not part of the presentation.

41 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Limitations

PThread overhead during concurrent runs

Restrictions on XML format

Namespaces

CDATA

Unicode

Processing Instructions

Validation

Optimal splitting algorithm unknown

42 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Related Work in High Performance XML Processing

Look-aside buffers/String caching [gsoap, XPP]

Trie data structure with schema-specific parser [Chiu et al 02, Engelen

04]

One pass table-driven recursive descent parser [Zhang et al 2006]

Pre-scan and schedule parser [Lu et al 2006]

Parallelized scanner, scheduled post-parser [Pan et al 2007]

43 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Comparison with Expat

Input file Expat Piximal-dfa Piximal-nfa
psd-7003 15.51 17.47 14.18

Table: Parse time, in seconds per parse, of high performance parsers

44 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Comparison Between GLibC and TCMalloc

2 3 4 5 6 7 8

25
26

27
28

29
30

31

Number of threads

T
im

e
(s

)

Selected allocator

GNU libc 2.7 malloc
Google TCMalloc

45 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Perspective Plot for 10,000 Integers

Thread Count

2

3

4

5
6

7
8

Split P
ercent

20
40

60

80

P
otential S

peedup 0.5

1.0

1.5

2.0

46 / 40

http://www.binghamton.edu

Appendix
Piximal Limitations
Related Work
Comparison with Expat and TCMalloc, glibc and TCMalloc

Perspective Plot for 10,000 Strings

Thread Count

2

3

4

5
6

7
8

Split P
ercent

20
40

60

80

P
otential S

peedup

0.5

1.0

1.5

2.0

2.5

3.0

47 / 40

http://www.binghamton.edu

	Introduction
	Large XML Data
	Ubiquity of Multi-processing Capabilities
	SAX-based parsing

	Parallel XML
	Piximal: Parallel Approach for Processing XML
	Serial NFA Tests

	Conclusions
	Final Remarks

	Appendix
	Appendix
	
	
	

