Exploring Data Reliability Tradeoffs in Replicated Storage Systems

Abdullah Gharaibeh

Matei Ripeanu

NetSysLab The University of British Columbia

Motivating Example: GridFTP Server

- A high-performance data transfer protocol
- Widely used in data-intensive scientific communities
- Typical deployments employ cluster-based storage systems

Motivation: reduce the cost of GridFTP server while maintaining performance and reliability

The Solution in a Nutshell

A hybrid architecture: combines scavenged and dedicated, low bandwidth storage

- The Opportunity
- The Solution

- Scavenging idle storage
 - High percentage of available idle space (e.g., ~50% at Microsoft, ~60% at ORNL)
 - Well-connected machines

Decoupling the two components of data reliability, durability and availability

- Durability is more important than availability
- Relax availability to reduce overall reliability overhead

The Solution: Internal Design

=> Object is **available** when at least one replica exist at the scavenged nodes

Features Revisited

- Low cost
 - Idle resources
 - Iow-cost durable component
- Reliable
 - Supports full durability
 - Configurable availability
- > High-performance
 - Aggregates multiple I/O channels
 - Decouples data and metadata management

- Availability Study
- Performance Evaluation: GridFTP Server

Questions:

- > What is the advantage of having a durable component?
- What is the impact of parameter constraints (e.g., replication level and bandwidth) on availability and overhead?
- > What replica placement scheme enables maximum availability?

To address these questions:

- > analytical model
- Iow-level simulator

What is the advantage of adding a durable component?

Evaluate the durability of the symmetric architecture

- Compare the replication overhead
- Evaluate the availability of the hybrid architecture

Durability of Symmetric Architecture

n = replication level, *b* = replication bandwidth

Overhead: Hybrid vs. Symmetric Architecture

Advantages of adding durable component:

Reduces amount of replication traffic ~ 2.5 times

Reduces the peak bandwidth ~ 7 times

Reduces replication traffic variability

Increases storage efficiency 50%

Configuration:

Symmetric Architecture: n = 8 replicas, b = 8Mbps Hybrid Architecture: n = 4 replicas, b = 2Mbps, B = 1Mbps

Availability of Hybrid Architecture

Configuration: n = 4 replicas, b = 2Mbps, B = 1Mbps

- Availability Study
- Performance Evaluation: GridFTP Server

A Scavenged GridFTP Server

Prototype Components
Globus' GridFTP Server
MosaStore scavenged sotrage system

Main challenge: transparent integration of legacy components

Scavenged GridFTP Software Components

Evaluation -- Throughput

Throughput for 40 clients reading 100 files of 100MB each. The GridFTP server is supported by 10 storage nodes each connected at 1Gbps.

This study demonstrates a hybrid storage architecture that combines scavenged and durable storage

Features:

- Reliable full durability, configurable availability
- Low-cost built atop scavenged resources
- Offers high-performance throughput

Contributions:

- Integrating scavenged with low-bandwidth durable storage
- > Tools to provision the system:
 - Analytical model => course grained prediction
 - Low-level simulator => detailed predictions
- A prototype implementation => demonstrates high-performance

Standard Deployments: Data Locality Limitation Explained

Lower availability: trade-off availability for stronger durability and lower maintenance overhead

Asymmetric system: the hybrid nature of the system may increase its complexity

The system mostly benefit read-dominant workloads: due to the limited bandwidth of the durable node

A data-store geared towards read-mostly workload: photo-sharing web services (e.g., Flickr, Facebook)

the number of replicas is modeled using a Markov chain model, assume exponentially distributed μ and λ .

=> Can be analyzed analytically as an *M/M/K/K* queue.

Each state represents the number of available replicas at the **volatile nodes**. The rate λ 0 depends on the durable node's bandwidth.

Availability =
$$1 - p_0$$

$$p_{0} = \frac{1}{1 + \gamma \sum_{k=1}^{n} \frac{\rho^{k-1}}{k!}}$$

Where
$$\rho = \lambda/\mu$$
, $\gamma = \lambda_0/\mu$

> Limitations:

> The model does not capture transient failures

 \succ The model assumes exponentially distributed replica repair and life times

> The model analyzes the state of a single object

> Advantages:

> unveils the key relationships between system characteristics

 \succ offers a good approximation for availability which enables validating the simulator

Distribution of Availability

What is the effect of having one replica stored on a medium with low access rate on the resulting maintenance overhead and availability?

Configuration: n = 4 replicas, b = 2Mbps, B = 1Mbps

Impact of Durable Node Replication Bandwidth

Statistics of	Durable node's bandwidth (B)	1 Mbps	2 Mbps	4 Mbps	8 Mbps
	Mean	1.90*10 ⁻⁵	9.78*10 ⁻⁶	7.09*10 ⁻⁶	4.54*10 ⁻⁶
Unavailability	99 th percentile	5.17*10 -4	4.52*10-4	3.69*10-4	3.44*10-4
	Maximum	4.93 *10 ⁻³	2.95*10 ⁻³	1.15*10 -3	1.07*10-3

Durable node's bandwidth (<i>B</i>)	1 Mbps	2 Mbps	4 Mbps	8 Mbps
Mean	41	41	41	41
99 th percentile	196	194	198	202
Maximum	892	906	906	920

Statistics of Aggregate Replication Bandwidth

Impact of Scavenged Nodes Replication Bandwidth

Statistics of	
Unavailability	

Volatile nodes' bandwidth (<i>b</i>)	1 Mbps	2 Mbps	4 Mbps	8 Mbps
Mean	7.07*10 ⁻⁵	1.97 *10 ⁻⁵	7.05*10 ⁻⁶	3.44*10-6
99 th percentile	1.18*10 -3	5.17*10 -4	2.86*10-4	7.93*10 ⁻⁵
Maximum	6.07 *10 ⁻³	4.93 *10 ⁻³	4.03 *10 ⁻³	4.01*10 ⁻³

Statistics of
Aggregate
Replication
Bandwidth

Volatile nodes' bandwidth (<i>b</i>)	1 Mbps	2 Mbps	4 Mbps	8 Mbps
Mean	38	40	41	42
99 th percentile	120	196	292	424
Maximum	438	892	1,864	3,616

Statistics of

Aggregate

Replication

Bandwidth

	Replication level (n)	3	4	5	6
Statistics of	Mean	1.97*10 ⁻⁵	1.49*10 ⁻⁶	1.39*10 ⁻⁷	2.46*10⁻⁸
Unavailability	99 th percentile	5.17*10 ⁻⁴	5.70*10 ⁻⁶	0	0
	Maximum	4.93 *10 ⁻³	3.99 *10 ⁻³	3.23*10-4	2.42*10-4

Replication level (n)	3	4	5	6
Mean	40	50	60	70
99 th percentile	196	244	286	336
Maximum	892	1152	1322	1458