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H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org
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Performance DevelopmentPerformance Development

6-8 years

My Laptop



Distribution of the Top500 Distribution of the Top500 
R

m
ax

 (T
flo

p/
s)

Rank

19 systems > 100 Tflop/s

51 systems > 50 Tflop/s

119  systems > 25 Tflop/s

12.6 Tflop/s

1.1 Pflop/s

2 systems > 1 Pflop/s

24 systems in Germany
267 systems replaced last time

Leibniz Rechenzentrum #44
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LANL Roadrunner LANL Roadrunner 
A Petascale System in 2008A Petascale System in 2008

“Connected Unit” cluster
192 Opteron nodes

(180 w/ 2 dual-Cell blades
connected w/ 4 PCIe x8 

links)

≈ 13,000 Cell HPC chips
 ≈ 1.33 PetaFlop/s (from Cell)

≈ 7,000 dual-core Opterons
≈ 122,000 cores

17 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s  (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip

Cell chip for each core



ORNL/UTK Computer Power Cost Projections 
2008-2012

• Over the next 5 
years ORNL/UTK 
will deploy 2 large 
Petascale systems

• Using 15 MW today
• By 2012 close to 

50MW!!
• Power costs greater 

than $10M today.
• Cost estimates 

based on $0.07 per 
KwH

Power becomes the architectural 
driver for future large systems

Cost Per Year

> $10M               > $20M        > $30M



SomethingSomething’’s Happening Heres Happening Here……
• In the “old 

days” it was: 
each year 
processors 
would become 
faster

• Today the clock 
speed is fixed or 
getting slower

• Things are still 
doubling every 
18 -24 months

• Moore’s Law 
reinterpretated.

Number of cores 
double every 
18-24 months 07 8

From K. Olukotun, L. Hammond, H. 
Sutter, and B. Smith

A hardware issue just became a 
software problem



MooreMoore’’s Law Reinterpreteds Law Reinterpreted

• Number of cores per chip doubles 
every 2 year, while clock speed 
remains fixed or decreases

• Need to deal with systems with 
millions of concurrent threads

• Future generation will have billions of 
threads!

• Number of threads of execution 
doubles every 2 year



Gflop/s

Tflop/s

Pflop/s

Eflop/s

Cray 2
1 Gflop/s

O(1) Thread

ASCI Red
1 Tflop/s

O(103) Threads

RoadRunner
1.1 Pflop/s

O(106) Threads
1 Eflop/s

O(109) Threads

~8 Hours~1 Year~1000 Year ~1 Min.
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Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

software
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms, and software

• Numerical libraries for example will 
change

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
to accommodate this



A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLParallel Linear Algebra Software for Multicore Architectures (PLASMA)ASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on 
- Level-1 BLAS 

operations

LAPACK (80’s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA (00’s)
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms 
- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



Coding for an Abstract MulticoreCoding for an Abstract Multicore

Parallel software for multicores should have 
two characteristics:
•Fine granularity: 

• High level of parallelism is needed
• Cores will probably be associated with relatively small local 

memories. This requires splitting an operation into tasks that 
operate on small portions of data in order to reduce bus traffic
and improve data locality.

•Asynchronicity: 
• As the degree of thread level parallelism grows and granularity 

of the operations becomes smaller, the presence of 
synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply)



DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (16 core system)LU Timing Profile (16 core system)

Time for each component
DGETF2

DLASWP(L)

DLASWP(R)

DTRSM

DGEMM

Threads – no lookahead

Bulk Sync PhasesBulk Sync Phases
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Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event Driven Event Driven 
MultithreadingMultithreading

Reorganizing 
algorithms to use 

this approach

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.



Tile QR (&LU) Algorithms

input matrix stored and processed by 
square tiles
complex DAG



Column-Major Blocked

Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks 
of data.

Achieving Fine GranularityAchieving Fine Granularity



• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations

• Locality of Reference
• Data storage – Block Data Layout
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PLASMA PLASMA (Redesign LAPACK/ScaLAPACK)(Redesign LAPACK/ScaLAPACK)
Parallel Linear Algebra Software for Multicore Architectures Parallel Linear Algebra Software for Multicore Architectures 

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort



If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG, 
find the critical path and 
execute it.

• DAG too large to generate ahead 
of time

Not explicitly generate
Dynamically generate  the DAG as 
we go

• Machines will have large 
number of cores in a distributed 
fashion

Will have to engage in message 
passing
Distributed management
Locally have a run time system



The DAGs are LargeThe DAGs are Large
• Here is the DAG for a factorization on a                 

20 x 20 matrix

• For a large matrix say O(106) the DAG is huge
• Many challenges for the software 21



Tile LU factorization 10x10 
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window
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Tile LU factorization 10x10 
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window



.....

function
arguments
..... direction (IN, OUT, INOUT)

start address
end address
�RAW writer
#WAR readers
�child / descendant
.....

task 
pool

task slice

task – a unit of scheduling (quantum of work)
slice – a unit of dependency resolution (quantum of data)
Current version uses one core to manage the task pool

PLASMA Dynamic Task Scheduler

In In

Out



How to Deal with Complexity? How to Deal with Complexity? 
• Many parameters in the code needs to be 

optimized.
• Software adaptivity is the key for 

applications to effectively use available 
resources whose complexity is 
exponentially increasing

• Goal:  
Automatically bridge the gap between the 
application and computers that are rapidly 
changing and getting more and more complex

• Non obvious interactions between 
HW/SW can effect outcome



AutoAuto--TuningTuning
Best algorithm implementation can depend strongly 
on the problem, computer architecture, compiler,…
There are 2 main approaches

Model-driven optimization
[Analytical models for various parameters; 
Heavily used in the compilers community;
May not give optimal results ]
Empirical optimization
[ Generate large number of code versions and runs them on a given
platform to determine the best performing one;
Effectiveness depends on the chosen parameters to optimize and
the search heuristics used ]

Natural approach is to combine them in a hybrid 
approach
[1st model-driven to limit the search space for a 2nd empirical part ]
[ Another aspect is adaptivity – to treat cases where tuning can not be
restricted to optimizations at design, installation, or compile time ]



Pruning the Search SpacePruning the Search Space
Time serial core kernels (dgemm, 
dssrfb, dssssm).

Intel 64 – dgemm                                  Power 6 – dssrfb

Pick up the 'best' NB/IB samples (pruning);
Select one per matrix size and number of cores.



DGETRF DGETRF -- Intel64 Intel64 -- 16 cores16 cores



Future Computer SystemsFuture Computer Systems
• Most likely be a hybrid design
• Think standard multicore chips and 

accelerator (GPUs)
• Today accelerators are attached
• Next generation more integrated
• Intel’s Larrabee in 2010

8,16,32,or 64 x86 cores

• AMD’s Fusion in 2011
Multicore with embedded graphics ATI

• Nvidia’s plans? 33

Intel Larrabee



WhatWhat’’s Next?s Next?

Many Floating-
Point Cores

All Large CoreAll Large Core
Mixed LargeMixed Large
andand
Small CoreSmall Core

All Small CoreAll Small Core

Many Small CoresMany Small Cores

Different Classes of 
Chips

Home
Games / Graphics
Business 
Scientific

Different Classes of 
Chips

Home
Games / Graphics
Business 
Scientific

+ 3D Stacked 
Memory



Hybrid ComputingHybrid Computing

Algorithms as DAGs                      Current hybrid CPU+GPU algorithms
(small tasks/tiles for multicore)          (small tasks for multicores and large tasks for GPUs)

Match algorithmic requirements to architectural strengths of the
hybrid components
Multicore   : small tasks/tiles
Accelerator: large data parallel tasks 

e.g. split the computation into tasks; define critical path that “clears” the way 
for other large data parallel tasks; proper schedule the tasks execution
Design algorithms with well defined “search space” to facilitate auto-tuning



Current Work: MAGMA Current Work: MAGMA 
• Algorithms (in particular LU) for 

Multicore + GPU systems

• Challenges
How to split the computation
Software development
Tuning

Work splitting
(for single GPU + 8 cores host)



Performance Performance [in double precision][in double precision]

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Multicore + GPU
Multicore

1 2 3 4 5 6 7 8
0

10

20

30

40

50 Multicore + GPU
Multicore

G
Flop/s

G
Flop/s

Matrix size x 1,000 Matrix size x 1,000

GPU :   GeForce GTX 280
(240 Cores @ 1.30 GHz)

Multicore : Intel Xeon
(2x4 Cores @ 2.33 GHz)

One-sided (LU)                                      Two-sided (Hessenberg)

Needed tuned parameters and tuned 
DGEMM for “rectangular” matrices



Exascale ComputingExascale Computing

38

Google: exascale computing study



Exascale ComputingExascale Computing
• Exascale systems are likely feasible by 2017 2 
• 10-100 Million processing elements (cores or                       

mini-cores) with chips perhaps as dense as                           
1,000 cores per socket, clock rates will grow                   
more slowly

• 3D packaging likely
• Large-scale optics based interconnects
• 10-100 PB of aggregate memory
• Hardware and software based fault management

• Heterogeneous cores
• Performance per watt — stretch goal 100 GF/watt of 

sustained performance  >> 10 – 100 MW Exascale system 
• Power, area and capital costs will be significantly higher than 

for today’s fastest systems

39
Google: exascale computing study



Five Important Features to Consider When Five Important Features to Consider When 
Computing at ScaleComputing at Scale

• Effective Use of Many-Core and Hybrid architectures
Dynamic Data Driven Execution
Block Data Layout

• Exploiting Mixed Precision in the Algorithms
Single Precision is 2X faster than Double Precision
With GP-GPUs 10x

• Self Adapting / Auto Tuning of Software
Too hard to do by hand

• Fault Tolerant Algorithms
With 1,000,000’s of cores things will fail

• Communication Avoiding Algorithms
For dense computations from O(n log p) to O(log p) 
communications 
GMRES s-step compute ( x, Ax,  A2x, … Asx )

40



Conclusions Conclusions 
• For the last decade or more, the research 

investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.

Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balance
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications



Collaborators / SupportCollaborators / Support
Employment 

opportunities for   
post-docs in the ICL 
group at Tennessee

PLASMA Parallel Linear 
Algebra Software for 
Multicore Architectures 

MAGMA Matrix Algebra on 
GPU and Multicore 
Architectures

Contact Jack Dongarra



If you are wondering whatIf you are wondering what’’s beyond s beyond 
ExaFlopsExaFlops

Mega, Giga, Tera, 
Peta, Exa, Zetta …

103 kilo    
106 mega    
109 giga    
1012 tera        
1015 peta    
1018 exa     
1021 zetta   

1024 yotta   
1027 xona 
1030 weka 
1033 vunda   
1036 uda 
1039 treda 
1042 sorta
1045 rinta
1048 quexa
1051 pepta 
1054 ocha 
1057 nenaN   
1060 minga 
1063 luma
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