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S EdCOMPUTER

£ 10P 500

H. Meuer, H. Simon, E. Strohmaier, & J

- Listing of the 500 most powerful

Computersin the World
- Yardstick: Rmax from LINPACK MPP

AX:b, dense problem

- Updated twice ayear

Rate

TPP performance

=

Size

SC'xy In the States in November
Meeting in Germany In June

- All data available from www.top500.0rg
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IcLOr:

Performance Development

100 Pflop/s
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< Distribution of the Top500
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32 |ist: The TOP10

Rank Site Computer Country Cores [1%1:1':;5] Er;::i F[‘;ﬁ MF/W
L | Los Alamos Nor Lab | Bladatentor qoppiszs | USA  129600| 11050 | 76% | 248 | 445
2 | o ;ggf AT Bk X4 &95“;‘ cray XTo USA  |150152|1059.0 | 77% | 6.95 | 152
3 A e R L /e e X | USA | 51200 | 487.0 | 80% | 209 | 233
4 Lawsea%;iﬁﬂmm 1BM 7 eServer Blue Gene USA  |212992| 478.2 | 80% | 2.32 | 205
5 Arg;ﬁfﬁf Lop |IBM/Blue Gene/P Solution|  USA  |163840| 450.3 | 81% | 126 | 357
6 | TACC) Un € Toxas| o ongen 2unBlade USA | 62976 | 4332 | 75% | 20 | 217
7 ngi%’:ﬂf;gﬁfw Cray / Franklin-Cray XT4 | USA | 38642 | 266.3 | 75% | 115 | 232
8 | oo rgggf OS o | Cray/Jaguar-CrayXT4 | USA | 30976 | 2060 | 79% | 158 | 130
9 SEEE MR | Cray/RedStorm-XT3/4 | USA 38208 | 2042 | 72% | 25 | 81
10 5uperc§:13ﬁ223icsnfer Dawning 3000 e "V | china | 30720 | 1806 | 77% | .85 | 212




8 LANL Roadrunner
o A Petascale System in 2008

“Connected Unit” cluster ~ 13,000 Cell HPC chips
192 Opteron nodes = 1.33 PetaFlop/s (from Cell)
(180 w/ 2 dual-Cell blades = 7,000 dual-core Opterons
connected w/ 4 PCle x8 = 122 000 cores

17 clusters

@J\ﬂ; . J
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2 Z 77T

nd stage InfiniBand 4x DDR interconne /
18 sets of 12 links to 8 SW|tches

Cell Chlp for each core

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chib



ORNL/UTK Computer Power Cost Projections
2008-2012

 Overthe next 5
years ORNL/UTK
will deploy 2 large
Petascale systems

* Using 15 MW today

By 2012 close to
SOMW!!

 Power costs greater
than $10M today.

 Cost estimates
based on $0.07 per
KwH

Power becomes the architectural

driver for future large systems

Megawatts
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ORNL Computing Power Projections

| B Computers

® Cooling

2009 2010 2011 2012

> $10M > $20M > $30M

Cost Per Year
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“ Something’s Happenlrg Here...

10,000,000
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A hardware issue just became a
software problem

B Transistors (000)

# Clock Speed (MHz)
& Power (W)
& PerfiClock (ILP)

1975

1980

1985

1990

1995

2000 2005

2010

In the “old
days” it was:
each year
Processors
would become
faster

Today the clock
speed is fixed or
getting slower

Things are still
doubling every
18 -24 months

Moore’s Law
reinterpretated.

= Number of cores
double every
18-24 monghs
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< Moore’s Law Reinterpreted

e Number of cores per chip doubles
every 2 year, while clock speed
remains fixed or decreases

e Need to deal with systems with

millions of concurrent threads

e Future generation will have billions of
threads!

e Number of threads of execution
doubles every 2 year
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Performance Development and Projections
~1000 Year ~1 Year ~8 Hours ~1 Min.
1,E+19 | J
e
Eflop/si.evs . =
1 d_,,a-"f fffﬂa-
1,E+17 + SUM M.
1,E+16 16.9PFlop/s 1 f’f-_f
1 #ff’" f_i_f"
Pflop/si,e+15 | 11 PFlop/s __,.f“"f.
1.E+14 -./_,_.-"'"--H—.
12.6 TRloplls _—
1,E+13 +
| 1.17 TFlop/s
Tflop/s1.E+12 - =500
1,E+11 4
1,E+10 +
P800 - -~ 400 MFlop/s
1,E+08 | — —
.-'-""FF--.-F- -""ﬂff
1E+07 - =
1,6406 e
]
1,E+05 ="
3 e =] o ) 3 4" o] o N 2 4 T o ) ] A T o b
Cray 2 ASCI Red RoadRunner
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Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

» Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

* For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

11



¢ A New Generation of Software:

ICL

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80°’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScaLAPACK (90’s) Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

. - some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ... )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new alaorithms need new kernels and relv on efficient schedulina alaorithms.
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“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

*Fine granularity:
* High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

*Asynchronicity:
« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.
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< Stepsinthe LAPACK LU

DGETF2
(Factor a panel)

DLSWP
(Backward swap)

DLSWP
(Forward swap)

~ DTRSM
(Triangular solve)

DGEMM |
(Matrix multiply)
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LAPACK

LAPACK

LAPACK

BLAS

BLAS
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LU Timing Proflle (16 core Q/stem)

Threads no lookahead

_] o

Time for each component

Bulk Sync Phases

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

T

DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM
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Event Driven @
Multithreading §

Ildeas not new.

Many papers use the
DAG approach.

Q AdaDtIVG Lookahead pynamic

while (1)
fetch_task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:
dlaswp () ;
dtrsm() ;
dgemm () ;
update_progress () ;
case END:
for ()

dlaswp() ;
return;

Reorganizing
algorithms to use

this approach 10



ICL

Tile QR (&LU) Algorithms

DGEQRT DLARFB DLARFB
R /. 1 F =
V1 4 o
DTSQRT DSSRFB DSSRFB
c1
< Qe N
DTSQRT DSSRFB DSSRFB

1\
Z
N

NH R

FOR k = 0..TILES-1

ALKI[K], T[KI[k] « DGRQRT(A[K][K])
FOR m = k+1..TILES-1

AlkI[k], Alm][k], TIm][k] « DTSQRT(A[k][k], Alm][k], T[m][k])
FOR n = k+1..TILES-1

AlK][n] « DLARFB(A[K][k], T[k][k], A[K][n])

FOR m = k+1..TILES-1

Alk][n], Alm][n] « DSSRFB(A[m][k], TIm][k], Alk][n], Alm][n])

input matrix stored and processed by
square tiles

complex DAG
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< Achieving Fine Granularity

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

of d%!:luarﬁn-l\/lajor Blocked
| ﬁ i Tt
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IcLor-"

PLASMA (Redesign LAPACK/ScaLAPACK)

Parallel Linear Algebra Software for Multicore Architectures

e Asychronicity

e Avoid fork-join (Bulk sync design)
e Dynamic Scheduling

e Qut of order execution

e Fine Granularity
e Independent block operations

e Locality of Reference
e Data storage - Block Data Layout

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort

19
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“ If We Had A Small Matrix Problem

e We would generate the DAG,
find the critical path and
execute It.

e DAG too large to generate ahead
of time
= Not explicitly generate
» Dynamically generate the DAG as
we go
e Machines will have large
number of cores in a distributed
fashion

= Will have to engage in message
passing

= Distributed management

» Locally have a run time system



<~ The DAGs are Large

e Here 1s the DAG for a factorization on a
20 x 20 matrix

e For a large matrix say O(10°) the DAG is huge
e Many challenges for the software 21
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Window

iding

Execution of the DAG by a Sli

A

ICL

Tile LU factorization 10x10

tiles
& 300 tasks total
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Window

iding

Execution of the DAG by a Sli

A

ICL

Tile LU factorization 10x10

tiles
& 300 tasks total
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«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window
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Window

iding

Execution of the DAG by a Sli

A

ICL

Tile LU factorization 10x10

tiles
& 300 tasks total
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«- Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window




<« PLASMA Dynamic Task Scheduler

task
pool

task e function i
e arguments slice

direction (IN, OUT, INOUT)
start address

end address

ORAW writer

#WAR readers

Ochild / descendant

Out

= task — a unit of scheduling (quantum of work)
= slice — a unit of dependency resolution (quantum of data)
= Current version uses one core to manage the task pool
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< How to Deal with Complexity?

e Many parameters in the code needs to be
optimized.

e Software adaptivity is the key for
applications to effectively use available

resources whose complexity Is
exponentially increasing

e Goal:

= Automatically bridge the gap between the
application and computers that are rapidly
changing and getting more and more complex

e Non obvious interactions between
HW/SW can effect outcome
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Auto-Tuning

= Best algorithm implementation can depend strongly
on the problem, computer architecture, compiler,...

s There are 2 main approaches

= Model-driven optimization
[Analytical models for various parameters;
Heavily used in the compilers community;
May not give optimal results ]
= Empirical optimization
[ Generate large number of code versions and runs them on a given
platform to determine the best performing one;
Effectiveness depends on the chosen parameters to optimize and
the search heuristics used ]

= Natural approach is to combine them in a hybrid

approach

[15t model-driven to limit the search space for a 2" empirical part ]

[ Another aspect is adaptivity - to treat cases where tuning can not be
restricted to optimizations at design, installation, or compile time ]
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Pruning the Search Space

= Time serial core kernels (dgemm,
dssrfb, dssssm).

9 18}
T ey XUIRE
8 s WY k 16
A {‘ 196
7k 4 ? gk 120 ieR 14| (256.64) _ (300,60) (340.68) (480.96)
et B0 (160,40) (168,56) ety
L 120,40 P T, | e L L O S L
6l 12 { ) R ‘_{g&-:-gﬁ:;s,}__,}.}v_f_@‘. O
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2 4 L-.':l,:-.,\-'
dgemm performance for NB | : +  dssrf performance for (NB,IB)
1r peak performance 2 peak performance
B selected NB B selected (NB,IB) pairs
i i n T . 0 i L i i 1 L I 1 I i
00 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450 500
NB NB

Intel 64 - dgemm Power 6 - dssrfb

. Pick up the 'best' NB/IB samples (pruning);
: Select one per matrix size and number of cores.
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< DGETRF - Intel64 - 16 cores

140

120

100

&0

Ghlopis

&0

40

20

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

2000
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Matrix size
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12000

DGEMM
-+-PLASMA
—MKL 10.1
-+~SCALAPACK
- APACK

14000
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< Future Computer Systems

e Most likely be a hybrid design

e Think standard multicore chips and
accelerator (GPUs)

e Today accelerators are attached ™
e Next generation more integrated

, -

. In-Order | In-Order | | In-Order | In-Order
o CPU core | CPU core CPU core | CPU core 'g
E’ Interprocessor Ring Network “g
e Coherent | Coherent ... | Coherent | Coherent =
- I e | L2 cache .2 cache | 1 he g

. E t | Coherent | | Coherent | C

O r X ‘ O r e S 1.2 cache | L2 cache 2 cache | I E
= In-Order | Tn-( order || In-Order | In-Order g

CPU core | CPU con e “PU core | CPU core

’ - -
e AMD’s Fusion in ntel Larrabee

= Multicore with embedded graphics ATI
e Nvidia’s plans? 33
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Mixed Large ' '
and ii
Small Core

T

3

All Large Core

+ 3D Stacked
Memory
Through silicon vias

Many Floating-
Point Cores

forming

Fiber
connections

Many Small Cores
R ———
=™ —_—

All Small Core M-
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& Hybrid Computing

@ Match algorithmic requirements to architectural strengths of the
hybrid components
Multicore : small tasks/tiles
Accelerator: large data parallel tasks

Algorithms as DAGs Current hybrid CPU+GPU algorithms

(small tasks/tiles for multicore) (small tasks for multicores and large tasks for GPUs)

GPU

.

% ) ' GPU
%*?;r--_
|

.Y?m

a4 e.g. split the computation into tasks; define critical path that ““clears” the way
for other large data parallel tasks; proper schedule the tasks execution

@ Design algorithms with well defined ““search space” to facilitate auto-tuning



Current Work: MAGMA

e Algorithms (in particular LU) for

Multicore + GPU systems

e Challenges
= How to split the computation
» Software development
= Tuning

NE M—7nb nb

1Core + 1GPU 7 Cores

Panel Trailing  Trailing
factorization sub-matrix sub-mairix

Work splitting

(for single GPU + 8 cores host)



'cr ' Pe rfO rman Ce [in double precision]

One-sided (LU) Two-sided (Hessenberg)
100 . 50 == Multicore + GPU
e ot
80 40
@ ®
T 60 T 30
() O
j4 k4
w (V)]
40 20
20 10
——
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Matrix size x 1,000 Matrix size x 1,000
PU : GeForce GTX 280
= Needed tuned parameters and tuned (240 Cores @ 1.30 GHz)
DGEMM for “rectangular’” matrices Multicore : Intel Xeon
(2x4 Cores @ 2.33 GHz)
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Exascale Computing

Google: exascale computing study

ExaScale Computing Study:
Technology Challenges in
Achieving Exascale Systems

Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar
Dan Campbell
William Carlson
William Dally
Monty Dennean
Paul Franzon
William Harred
Kerry Hill

Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was sponsored by DARPA TPTO m the ExaSeale Computing Study with Dr. Wilhiam Harod
as Program Manager; AFRL contract mmber FABS50-07-C-T724. This report 1s published m the
mierest of scientific and technical mformation exchange and its pubhcation does not constitute the
Government s approval or disapproval of its ideas or findmgs

NOTICE

Uang Governmment drawrings, specifications, or other data mmchided m this document for any
purpose other than Government procurement does not m any way obligate the 1.5, Government.
The fact that the Government formmlated or supphied the drawmgs, specifications, or other data
does not license the holder or any other person or corporation; or convey amy rights or permission to
mamufacture, use, or sell any patented 1mvention that may relate to them.

AFPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

38



ExaScale Computing Study:

Technology Challenges in

< Exascale Computing ==

Shekhar Borkar

e Exascale systems are likely feasible by 2017 2 &z

= 10-100 Million processing elements (cores or &,
mini-cores) with chips perhaps as dense as S,
1,000 cores per socket, clock rates will grow  E=EEE=miswmenni
more slowly s

« 3D packaging likely e

e Large-scale optics based interconnects
e 10-100 PB of aggregate memory
e Hardware and software based fault management

e Heterogeneous cores

e Performance per watt — stretch goal 100 GF/watt of
sustained performance >> 10 - 100 MW Exascale system

e Power, area and capital costs will be significantly higher than
for today’s fastest systems

39
Google: exascale computing study
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Five Important Features to Consider When
Computing at Scale

e Effective Use of Many-Core and Hybrid architectures
= Dynamic Data Driven Execution
= Block Data Layout

e Exploiting Mixed Precision in the Algorithms
= Single Precision is 2X faster than Double Precision
= With GP-GPUs 10x

e Self Adapting / Auto Tuning of Software
* Too hard to do by hand

e Fault Tolerant Algorithms
= With 1,000,000’s of cores things will falil

e Communication Avoiding Algorithms

= For dense computations from O(n log p) to O(log p) 40
communications

= GMRES s-step compute ( X, AX, A2%X, ... AX)
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Conclusions

e For the last decade or more, the research
Investment strategy has been
overwhelmingly biased in favor of hardware.

e This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

e Moreover, the return on investment IS more
favorable to software.

» Hardware has a half-life measured in years, while

software has a half-life measured In decades.

e High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
e No Moore’s Law for software, algorithms and applications
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< Collaborators / Support

Employment
opportunities for . Microsoft
post-docs in the ICL Q_

group at Tennessee "\ The MathWorks =

PLASMA Parallel Linear
Algebra Software for |
Multicore Architectures GO( )gle

Deutschland

Erweiterte Suche

MAG MA Matrix Algebra‘ On e { Google-Suche uf gut Gliickig T
G P U an d M u Itl CO re Suche: ® DasWeb ' Seiten auf Deutsch S&Deutschland

Architectures

Werben mit Goegle - Unternehmensangebote - Uber Google - Google.com in English

Contact Jack Dongarra



¢ If you are wondering what’s beyonad
© ExaFlops

1024 yotta
Mega, Giga, Tera, 1027 xona
30
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10°  Kil 1036 uda
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10 Jiga 104> rinta
1012  tera
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10°1  pepta
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1021 zetta
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10%°  minga
1093 luma
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