
6/15/2009 1

An Overview of High An Overview of High
Performance Computing and Performance Computing and

Challenges for the FutureChallenges for the Future

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

2

H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org

Size

R
at

e

TPP performance

Performance DevelopmentPerformance Development

6-8 years

My Laptop

Distribution of the Top500 Distribution of the Top500
R

m
ax

 (T
flo

p/
s)

Rank

19 systems > 100 Tflop/s

51 systems > 50 Tflop/s

119 systems > 25 Tflop/s

12.6 Tflop/s

1.1 Pflop/s

2 systems > 1 Pflop/s

24 systems in Germany
267 systems replaced last time

Leibniz Rechenzentrum #44

3232ndnd List: The TOP10List: The TOP10

LANL Roadrunner LANL Roadrunner
A Petascale System in 2008A Petascale System in 2008

“Connected Unit” cluster
192 Opteron nodes

(180 w/ 2 dual-Cell blades
connected w/ 4 PCIe x8

links)

≈ 13,000 Cell HPC chips
 ≈ 1.33 PetaFlop/s (from Cell)

≈ 7,000 dual-core Opterons
≈ 122,000 cores

17 clusters

2nd stage InfiniBand 4x DDR interconnect
(18 sets of 12 links to 8 switches)

2nd stage InfiniBand interconnect (8 switches)

Based on the 100 Gflop/s (DP) Cell chip

Hybrid Design (2 kinds of chips & 3 kinds of cores)
Programming required at 3 levels.

Dual Core Opteron Chip

Cell chip for each core

ORNL/UTK Computer Power Cost Projections
2008-2012

• Over the next 5
years ORNL/UTK
will deploy 2 large
Petascale systems

• Using 15 MW today
• By 2012 close to

50MW!!
• Power costs greater

than $10M today.
• Cost estimates

based on $0.07 per
KwH

Power becomes the architectural
driver for future large systems

Cost Per Year

> $10M > $20M > $30M

SomethingSomething’’s Happening Heres Happening Here……
• In the “old

days” it was:
each year
processors
would become
faster

• Today the clock
speed is fixed or
getting slower

• Things are still
doubling every
18 -24 months

• Moore’s Law
reinterpretated.

Number of cores
double every
18-24 months 07 8

From K. Olukotun, L. Hammond, H.
Sutter, and B. Smith

A hardware issue just became a
software problem

MooreMoore’’s Law Reinterpreteds Law Reinterpreted

• Number of cores per chip doubles
every 2 year, while clock speed
remains fixed or decreases

• Need to deal with systems with
millions of concurrent threads

• Future generation will have billions of
threads!

• Number of threads of execution
doubles every 2 year

Gflop/s

Tflop/s

Pflop/s

Eflop/s

Cray 2
1 Gflop/s

O(1) Thread

ASCI Red
1 Tflop/s

O(103) Threads

RoadRunner
1.1 Pflop/s

O(106) Threads
1 Eflop/s

O(109) Threads

~8 Hours~1 Year~1000 Year ~1 Min.

11

Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our

software
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms, and software

• Numerical libraries for example will
change

For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLParallel Linear Algebra Software for Multicore Architectures (PLASMA)ASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, …)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Coding for an Abstract MulticoreCoding for an Abstract Multicore

Parallel software for multicores should have
two characteristics:
•Fine granularity:

• High level of parallelism is needed
• Cores will probably be associated with relatively small local

memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

•Asynchronicity:
• As the degree of thread level parallelism grows and granularity

of the operations becomes smaller, the presence of
synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.

14

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LUSteps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply)

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (16 core system)LU Timing Profile (16 core system)

Time for each component
DGETF2

DLASWP(L)

DLASWP(R)

DTRSM

DGEMM

Threads – no lookahead

Bulk Sync PhasesBulk Sync Phases

16

Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event Driven Event Driven
MultithreadingMultithreading

Reorganizing
algorithms to use

this approach

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.

Tile QR (&LU) Algorithms

input matrix stored and processed by
square tiles
complex DAG

Column-Major Blocked

Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks
of data.

Achieving Fine GranularityAchieving Fine Granularity

• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations

• Locality of Reference
• Data storage – Block Data Layout

19

PLASMA PLASMA (Redesign LAPACK/ScaLAPACK)(Redesign LAPACK/ScaLAPACK)
Parallel Linear Algebra Software for Multicore Architectures Parallel Linear Algebra Software for Multicore Architectures

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort

If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG,
find the critical path and
execute it.

• DAG too large to generate ahead
of time

Not explicitly generate
Dynamically generate the DAG as
we go

• Machines will have large
number of cores in a distributed
fashion

Will have to engage in message
passing
Distributed management
Locally have a run time system

The DAGs are LargeThe DAGs are Large
• Here is the DAG for a factorization on a

20 x 20 matrix

• For a large matrix say O(106) the DAG is huge
• Many challenges for the software 21

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles
300 tasks total
100 task window

Execution of the DAG by a Sliding Window

.....

function
arguments
..... direction (IN, OUT, INOUT)

start address
end address
�RAW writer
#WAR readers
�child / descendant
.....

task
pool

task slice

task – a unit of scheduling (quantum of work)
slice – a unit of dependency resolution (quantum of data)
Current version uses one core to manage the task pool

PLASMA Dynamic Task Scheduler

In In

Out

How to Deal with Complexity? How to Deal with Complexity?
• Many parameters in the code needs to be

optimized.
• Software adaptivity is the key for

applications to effectively use available
resources whose complexity is
exponentially increasing

• Goal:
Automatically bridge the gap between the
application and computers that are rapidly
changing and getting more and more complex

• Non obvious interactions between
HW/SW can effect outcome

AutoAuto--TuningTuning
Best algorithm implementation can depend strongly
on the problem, computer architecture, compiler,…
There are 2 main approaches

Model-driven optimization
[Analytical models for various parameters;
Heavily used in the compilers community;
May not give optimal results]
Empirical optimization
[Generate large number of code versions and runs them on a given
platform to determine the best performing one;
Effectiveness depends on the chosen parameters to optimize and
the search heuristics used]

Natural approach is to combine them in a hybrid
approach
[1st model-driven to limit the search space for a 2nd empirical part]
[Another aspect is adaptivity – to treat cases where tuning can not be
restricted to optimizations at design, installation, or compile time]

Pruning the Search SpacePruning the Search Space
Time serial core kernels (dgemm,
dssrfb, dssssm).

Intel 64 – dgemm Power 6 – dssrfb

Pick up the 'best' NB/IB samples (pruning);
Select one per matrix size and number of cores.

DGETRF DGETRF -- Intel64 Intel64 -- 16 cores16 cores

Future Computer SystemsFuture Computer Systems
• Most likely be a hybrid design
• Think standard multicore chips and

accelerator (GPUs)
• Today accelerators are attached
• Next generation more integrated
• Intel’s Larrabee in 2010

8,16,32,or 64 x86 cores

• AMD’s Fusion in 2011
Multicore with embedded graphics ATI

• Nvidia’s plans? 33

Intel Larrabee

WhatWhat’’s Next?s Next?

Many Floating-
Point Cores

All Large CoreAll Large Core
Mixed LargeMixed Large
andand
Small CoreSmall Core

All Small CoreAll Small Core

Many Small CoresMany Small Cores

Different Classes of
Chips

Home
Games / Graphics
Business
Scientific

Different Classes of
Chips

Home
Games / Graphics
Business
Scientific

+ 3D Stacked
Memory

Hybrid ComputingHybrid Computing

Algorithms as DAGs Current hybrid CPU+GPU algorithms
(small tasks/tiles for multicore) (small tasks for multicores and large tasks for GPUs)

Match algorithmic requirements to architectural strengths of the
hybrid components
Multicore : small tasks/tiles
Accelerator: large data parallel tasks

e.g. split the computation into tasks; define critical path that “clears” the way
for other large data parallel tasks; proper schedule the tasks execution
Design algorithms with well defined “search space” to facilitate auto-tuning

Current Work: MAGMA Current Work: MAGMA
• Algorithms (in particular LU) for

Multicore + GPU systems

• Challenges
How to split the computation
Software development
Tuning

Work splitting
(for single GPU + 8 cores host)

Performance Performance [in double precision][in double precision]

1 2 3 4 5 6 7 8
0

20

40

60

80

100
Multicore + GPU
Multicore

1 2 3 4 5 6 7 8
0

10

20

30

40

50 Multicore + GPU
Multicore

G
Flop/s

G
Flop/s

Matrix size x 1,000 Matrix size x 1,000

GPU : GeForce GTX 280
(240 Cores @ 1.30 GHz)

Multicore : Intel Xeon
(2x4 Cores @ 2.33 GHz)

One-sided (LU) Two-sided (Hessenberg)

Needed tuned parameters and tuned
DGEMM for “rectangular” matrices

Exascale ComputingExascale Computing

38

Google: exascale computing study

Exascale ComputingExascale Computing
• Exascale systems are likely feasible by 2017 2
• 10-100 Million processing elements (cores or

mini-cores) with chips perhaps as dense as
1,000 cores per socket, clock rates will grow
more slowly

• 3D packaging likely
• Large-scale optics based interconnects
• 10-100 PB of aggregate memory
• Hardware and software based fault management

• Heterogeneous cores
• Performance per watt — stretch goal 100 GF/watt of

sustained performance >> 10 – 100 MW Exascale system
• Power, area and capital costs will be significantly higher than

for today’s fastest systems

39
Google: exascale computing study

Five Important Features to Consider When Five Important Features to Consider When
Computing at ScaleComputing at Scale

• Effective Use of Many-Core and Hybrid architectures
Dynamic Data Driven Execution
Block Data Layout

• Exploiting Mixed Precision in the Algorithms
Single Precision is 2X faster than Double Precision
With GP-GPUs 10x

• Self Adapting / Auto Tuning of Software
Too hard to do by hand

• Fault Tolerant Algorithms
With 1,000,000’s of cores things will fail

• Communication Avoiding Algorithms
For dense computations from O(n log p) to O(log p)
communications
GMRES s-step compute (x, Ax, A2x, … Asx)

40

Conclusions Conclusions
• For the last decade or more, the research

investment strategy has been
overwhelmingly biased in favor of hardware.

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

• Moreover, the return on investment is more
favorable to software.

Hardware has a half-life measured in years, while
software has a half-life measured in decades.

• High Performance Ecosystem out of balance
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications

Collaborators / SupportCollaborators / Support
Employment

opportunities for
post-docs in the ICL
group at Tennessee

PLASMA Parallel Linear
Algebra Software for
Multicore Architectures

MAGMA Matrix Algebra on
GPU and Multicore
Architectures

Contact Jack Dongarra

If you are wondering whatIf you are wondering what’’s beyond s beyond
ExaFlopsExaFlops

Mega, Giga, Tera,
Peta, Exa, Zetta …

103 kilo
106 mega
109 giga
1012 tera
1015 peta
1018 exa
1021 zetta

1024 yotta
1027 xona
1030 weka
1033 vunda
1036 uda
1039 treda
1042 sorta
1045 rinta
1048 quexa
1051 pepta
1054 ocha
1057 nenaN
1060 minga
1063 luma

43

	An Overview of High Performance Computing and Challenges for the Future
	Performance Development
	Distribution of the Top500
	32nd List: The TOP10
	LANL Roadrunner �A Petascale System in 2008
	ORNL/UTK Computer Power Cost Projections 2008-2012
	Something’s Happening Here…
	Moore’s Law Reinterpreted
	Major Changes to Software
	A New Generation of Software:�Parallel Linear Algebra Software for Multicore Architectures (PLASMA)
	Coding for an Abstract Multicore
	Adaptive Lookahead - Dynamic
	PLASMA (Redesign LAPACK/ScaLAPACK)� Parallel Linear Algebra Software for Multicore Architectures
	If We Had A Small Matrix Problem
	The DAGs are Large
	How to Deal with Complexity?
	Auto-Tuning
	Pruning the Search Space
	DGETRF - Intel64 - 16 cores
	Future Computer Systems
	What’s Next?
	Hybrid Computing
	Current Work: MAGMA
	 Performance [in double precision]
	Exascale Computing
	Exascale Computing
	Five Important Features to Consider When Computing at Scale
	Conclusions
	Collaborators / Support
	If you are wondering what’s beyond ExaFlops

