
Phillip M. Dickens
Jeremy Logan

Department of Computer Science
University of Maine

Y-Lib: A User Level Library to Increase the Performance of MPI-IO
in a Lustre File System Environment

Data Intensive Applications

Large-scale computing clusters are being increasingly used to
execute large, data-intensive applications.

Data sets ranging from gigabytes to terabytes and beyond.
I/O requirements are becoming a significant bottleneck in
application performance.

Led to very powerful parallel file systems that can accommodate
concurrent file system accesses by thousands of clients (e.g.,
Lustre, GPFS).

MPI-IO

Scalable performance also requires flexible parallel
I/O interfaces with high-performance implementations
to optimize access.

MPI-IO generally considered de-facto parallel I/O
API.

MPICH-2 is one important implementation of MPI.
ROMIO implements parallel I/O API (perhaps most widely
used implementation).

Lustre File System

Lustre consists of three main components:
File System Client: (Request I/O services).

Object Storage Servers (OSSs, provide storage services).
Each OSS can manage multiple Object Storage Servers
(handle object storage and management).

Meta-data servers (manage the namespace).

Lustre File System
Lustre is object-based file system where OSTs manage the
objects they control.

Two features lead to enhanced performance.

Meta-data stored separately from file data.
Once meta-data acquired can interact directly with the OSTs.

Files can be striped across multiple OSTs.
Provides concurrent access to shared files by multiple application
processes.

Problem
Quite often MPI-IO performs very poorly in Lustre file systems.

One obvious reason is that Lustre exports the POSIX file system
API.

Difficult to implement high-performance parallel I/O.

Less obvious reason is that the assumptions upon which most
important parallel I/O optimizations are based do not hold in a
Lustre environment.

Key assumption: Performing large, contiguous I/O operations in
parallel provides the optimal parallel I/O performance.

Collective I/O
Collective I/O operations

All processes make the I/O call and provide their individual I/O
requests.

Provides significant information to implementation about aggregate
I/O request.

Implementation can often combine small, non-contiguous I/O
requests into larger, contiguous requests.

Implemented in ROMIO using two-phase I/O.
First phase: I/O requests are combined and data is redistributed
among aggregator processes to put into correct order.
Second phase: Data is written to disk.

Collective I/O

Implemented in ROMIO using two-phase I/O.
First phase: I/O requests are combined and data is redistributed
among aggregator processes to put into correct order.
Second phase: Data is written to disk.

Collective I/O

Implemented in ROMIO using two-phase I/O.
First phase: I/O requests are combined to obtain picture of the
aggregate I/O request.

Then redistribute data among aggregator processes to put into correct
order.

Second phase: Data is written to disk concurrently.

Simple Example

P0

P2

P1

P3

0

1

2

3

P0 P1

P2 P3

P0

P1

P2

P3

Conforming Distribution

Lustre API

User can set:
stripe size
stripe width (number of OSTs across which file is striped)
beginning OST

File system stripes objects across OSTs in a round-
robin fashion, starting from user-specified start.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

OST 1 OST 2 OST 3 OST 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

OST 1 OST 2 OST 3 OST 4

P0

P1

P2

P3

ROMIO redistributes data into conforming
distribution.

OST 1 OST 2 OST 3 OST 4

P0 P1 P2 P3

All-to-All Communication Pattern

All-to-All Communication Pattern

Well known problem
Generally suggested to limit stripe width

Frequently see default and suggested width of four.

Reduces contention but significantly limits parallelism
and parallel I/O performance.
Problem is that this data aggregation pattern is not
well aligned with Lustre’s object-based storage
architecture.

Y-Lib

Believe it is possible to stripe across large numbers
of OSTs and minimize contention.
Accomplished by a user-level library termed Y-Lib
that redistributes data in a different pattern.

Redistributes data such that the number of OSTs with which
a given process communicates is limited (one-to-one OST
pattern).
Process write data to OSTs by performing a set of
independent writes concurrently.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

OST 1 OST 2 OST 3 OST 4

P0 P1 P2 P3

Trade Offs

All-to-All make few large requests.
One-to-One make a large number of small I/O
requests.

Experimental Design

Conducted experiments on Ranger at the Texas
Advanced Computing Center (TACC, University of
Texas).
Lustre file system used here consisted of 50 OSSs,
each of which hosted 6 OSTs (total of 300 OSTs,
1.73 Petabytes of storage).
Studied the throughput obtained in collective write
operations.

Parameters

Varied three key parameters:
Data redistribution pattern.
Number of aggregator processes (128 - 1024).
File size
Each process wrote 1 Gigabyte

File size varied from 128 Gigabytes to 1 Terabyte.
Maintained constant 128 OSTs.
Bottleneck was 1-Gigabyte/second throughput from the
OSSs to the network.
Results are mean of 50 trials taken over 5 days.

Parameters

Stripe size was constant at 1 Megabyte.
Each process wrote 1 Gigabyte

In the case of Y-Lib each process performed 1024 independent
write operations.
File size varied from 128 Gigabytes to 1 Terabyte.

Maintained constant 128 OSTs.
Bottleneck was 1-Gigabyte/second throughput from the
OSSs to the network.

Parameters

Maintained constant 128 OSTs.
Bottleneck was 1-Gigabyte/second throughput from the
OSSs to the network.
Each data point is the mean of 50 trials taken over 5 days.

Also show 95% confidence intervals.

Data Aggregation Patterns

Redistribution required
MPI: Assigned data in one-to-one OST pattern and set the
hint to use two-phase I/O.
Y-Lib: Initially in conforming distribution with collective call to
Y-Lib.

No redistribution required
MPI data in conforming distribution
Y-Lib data in one-to-one OST pattern.

MPI I/O Write Strategies

Can the performance of MPI-IO itself be improved
using this technique?

Forced to use one-to-one OST pattern with concurrent,
independent writes.
Set the file view specifying one-to-one OST pattern and
disabled two-phase I/O and data sieving.

	Y-Lib: A User Level Library to Increase the Performance of MPI-IO in a Lustre File System Environment
	Data Intensive Applications
	MPI-IO
	Lustre File System
	Lustre File System
	Problem
	Collective I/O
	Collective I/O
	Collective I/O
	Lustre API
	All-to-All Communication Pattern
	Y-Lib
	Trade Offs
	Experimental Design
	Parameters
	Parameters
	Parameters
	Data Aggregation Patterns
	MPI I/O Write Strategies

