Athanasia Asiki Dimitrios Tsoumakos Nectarios Koziris {nasia, dtsouma, nkoziris}@cslab.ece.ntua.gr

Athanasia Asiki HPDC 2009

Motivation (1)

• Efficient, on-line processing of bulk data

- Organized in concept hierarchies
- Over one or more dimensions

Concept hierarchies

- A sequence of mappings from more general to lower-level concepts
- Allow the structuring of information into categories

Observed in many applications

- Computer networks (e.g., router data)
- Business (e.g., sales data)
- Data warehouses

Athanasia Asiki HPDC 2009

Example: Grid Information System

- Large-scale geographically distributed application by nature
- Large volumes of data
- Online update is required
 - information generated continuously and at high rate
- Metadata of generated values follow concept hierarchies
- Peer-to-Peer technologies introduce:
 - Scalability
 - Fault-tolerance
 - Avoidance of single point of failures of centralized approaches

Athanasia Asiki HPDC 2009

Grid Information System

Hierarchical structures

Athanasia Asiki HPDC 2009

Grid Information System Registry VO server **Information Producers** Information **Information Consumers Producers** Hierarchical structures Tuples indexed with Germany by HPDC VO Tuples indexed by HPDC VO Information Consumers

Athanasia Asiki HPDC 2009

Grid Information System

Athanasia Asiki HPDC 2009

Motivation (2)

• Exploitation of concept hierarchies

- Organization of information on different levels of aggregated views
- Efficient manipulation of data
- Provide a system to support hierarchical data
 - Detection of real time changes in trends based on incoming queries
 - Adaptive and flexible mechanisms based on the requirements of users

Our Goals

• Query data on different levels of granularity

- Roll-up towards more generalized levels
- Drill-down towards more detailed levels

• Adaptive re-indexing on a per-tree basis according to the incoming queries

- Maintenance of hierarchy specific information during store operations
- Online updates, while resolution of queries continues
- Distributed catalogue of stored data
- Support all above operations in a fully distributed environment

Roadmap

- Data insertion, while maintaining hierarchy-specific information
- Data Lookup in the DHT
 - With DHT lookups for values of the *pivot levels*
 - With soft-state indices
 - With flooding
- Re-indexing operations
 - Decision procedure
 - Roll-up / Drill-down
- Online updates
- Simulation results

Athanasia Asiki HPDC 2009

Notation

Athanasia Asiki HPDC 2009

Insertion

- Look up of *root key*
- Node responsible for the *root key* :
 - Find pivot key
 - Create an index
- Store of tuple in the node responsible for its pivot key
- Tree structures
- Statistics per tree

Athanasia Asiki HPDC 2009

Query processing

- biomed **Exact-match** queries Queries targeting pivot level Prod. • simple DHT lookups Biomed: SEE, SWE ▶ SEE Queries targeting root keys HG-01 **H**G-02 • use of indices Flooded queries biomed All the nodes scan their local HG-01 databases Prod. Soft-state, bidirectional indices from the node responsible for SWE the queried value towards to CESGA-01 the *"actual"* nodes are created
- Indexed queries

Athanasia Asiki HPDC 2009

Re-indexing operations

- Re-indexing operations
 - Roll-up
 - Drill-down (Group Drill-down)
- Adapt the level of the indexing to the queries
 on a per tree basis
- Re-indexing operations are triggered
 - After a flooded query
 - After a predefined number of queries for indexed values in a node

• Re-indexing towards a queried level (hence "most popular"):

- if this level is the most popular
- threshold% criterion

Athanasia Asiki HPDC 2009

Drill-down

- Query for values belonging to levels below the pivot level
- If any level below this pivot level is the "*most popular*", then drill down to this level

Scenario:

- Re-indexing decision after query for HG-01
- Drill-down to "Site" Level is decided
- Re-insertion of tuples with the new pivot keys
- Erasure of existing indices
- The root key ("*biomed*") is informed about the new pivot keys

Athanasia Asiki HPDC 2009

Drill-down

- Query for values belonging to levels below the pivot level
- If any level below this pivot level is the "*most popular*", then drill down to this level

Athanasia Asiki HPDC 2009

Roll-up operation

- Query for a value above the pivot level
- More than one nodes provide statistics
- If the queried level is the "most popular", then the involved trees roll-up to this level
- Group Drill-down

Scenario:

- Query for "biomed"
- A node is positive to roll-up to the "VO" level
- The node that queried, collects statistic from all involved nodes and decides if a re-indexing operation is needed

Athanasia Asiki HPDC 2009

Roll-up operation

- Query for a value above the pivot level
- More than one nodes provide statistics
- If the queried level is the "most popular", then the involved trees roll-up to this level
- Group Drill-down

Athanasia Asiki HPDC 2009

Roll-up operation

- Query for a value above the pivot level
- More than one nodes provide statistics
- If the queried level is the "most popular", then the involved trees roll-up to this level
- Group Drill-down

VO

esr

An Adaptive Online System for Efficient Processing of Hierarchical Data

Reg.

GER.

Categ.

Tier2

Site

DE-01

Athanasia Asiki HPDC 2009

Norm.

141,36

CPU Time

Update

- The appropriate pivot level should be selected
- If the pivot key exists
 - Selection of the used pivot level
- If the root key already but not the pivot key exists:
 - Selection of the existing MaxPivotLevel
 - Update of existing indices for values above the pivot level

VO

esr

biomed

An Adaptive Online System for Efficient Processing of Hierarchical Data

Reg.

GER.

SEE

Categ.

Tier2

Prod

Site

DE-01

HG-03

Athanasia Asiki HPDC 2009

Norm.

141,36

95,6

CPU Time

Update

- The appropriate pivot level should be selected
- If the pivot key exists
 - Selection of the used pivot level
- If the root key already but not the pivot key exists:
 - Selection of the existing MaxPivotLevel
 - Update of existing indices for values above the pivot level

Athanasia Asiki HPDC 2009

Update

- The appropriate pivot level should be selected
- If the pivot key exists
 - Selection of the used pivot level
- If the root key already but not the pivot key exists:
 - Selection of the existing MaxPivotLevel
 - Update of existing indices for values above the pivot level

Athanasia Asiki HPDC 2009

Experimental setup

- modified version of FreePastry DHT
- 256 nodes

• Synthetically generated data:

- 100k tuples 4-level conept hierarchy
- Value distribution
 - |I₀=100|
 - $|I_1 = 1000| \Rightarrow Pivot level during initials insertions$
 - |I₂=10000|
 - |I₃=100000|
- Uniform distribution of values per level
- Each distinct value of level l_i has a constant number of children in l_{i+1}

Athanasia Asiki HPDC 2009

Experimental setup (2)

- Queries
 - 50k queries
 - Uniform or Zipfian distributions for the most popular levels
 - Uniform, 80/20, 90/10, 99/1 inside the level
- *Threshold% = 30%*
- Performance metrics:
 - **Precision :** percentage of queries answered without flooding

Athanasia Asiki HPDC 2009

Skewed query workloads

*Skewed towards l*₀

Skewed towards l_3

- Better performance for more skewed workloads
- Limited number of distinct values in the upper levels Quicker to roll-up and adapt to the query workload

- Better performance for less skewed workloads inside the level
- Drill-down operations improve the precision
- Indices are not so useful due to the large number of distinct values

Athanasia Asiki HPDC 2009

Multiple bias points

- Why is this challenging?
- Data is divided in quarters
- The most popular level is different for each quarter
- Over 92% of the queries are answered without flooding
- The number of roll-up and drill-down operations adjust to the query workload

Athanasia Asiki HPDC 2009

- Dynamic change in the skew of the workload
- Roll-up and drill-down operations contribute to the recovery of the achieved precision
- Existing indices are more useful, when the skew changes from I_3 to I_0 and thus the precision remains high, after the change in skew
- Precision is low when the skew changes from I_0 to I_3 until drill-down operations take place

Athanasia Asiki HPDC 2009

Conclusions

- Mechanisms to store, index and query hierarchical data
 - Adaptive
 - Online
 - Distributed environment
- Use case: Grid IS
- Experimental evaluation
 - High precision in various types of workloads
 - Adaptiveness to incoming queries

• Future work

- Implementation with multiple dimensions!
- Implementation in a real testbed

