
Automated Cluster-Based Web Service Performance Tuning
I-Hsin Chung, and Jeffrey K. Hollingsworth

{ihchung, hollings}@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract
Active Harmony provides a way to automate performance
tuning. In this paper, we apply the Active Harmony system
to improve the performance of a cluster-based web service
system. The performance improvement cannot easily be
achieved by tuning individual components for such a
system. The experimental results show that there is no
single configuration for the system that performs well for
all kinds of workloads. By tuning the parameters, Active
Harmony helps the system adapt to different workloads
and improve the performance up to 16%. For scalability,
we demonstrate how to reduce the time when tuning a
large system with many tunable parameters. Finally an
algorithm is proposed to automatically adjust the
structure of cluster-based web systems, and the system
throughput is improved up to 70% using this technique.

1. Introduction

Online e-commerce sites are one of the main

applications on the Internet today. They are used as a
standard mechanism for online information distribution
and exchange. In order to provide such service, e-
commerce sites require large online web systems. The
systems must be able to accommodate widely varying
service demands. They should also be adaptive when the
number or nature of requests changes.

Clusters of commodity workstations interconnected by
a high-speed network are frequently used to meet these
challenges. The infrastructure can tolerate partial failures
and allows scaling up by adding more components. They
are also representative of other types of coupled
distributed systems.

When these systems are designed and built, the
developers tend to set the default configuration of the
system (e.g., number of processes forked, memory size
allocated) conservatively (i.e., appropriate values but not
well tuned). Therefore, the customer environment may not
be fully utilized and thus the performance for such a
system may be improved if its configuration is “tuned”
appropriately.

While other clustered-based web service performance
tuning projects require experts to analyze the internals of

the components and improve the performance based on
the models built, the Active Harmony system is designed
to provide a general solution that can help systems become
adaptive to their execution environment as well as to
changes in workload. By improving the performance
iteratively, the Active Harmony system changes
performance optimization from post-mortem to real-time
steering. And the most important of all, it is not necessary
for the Active Harmony user to have detailed insight
knowledge of the system to be tuned.

This paper differs from our previous work [9, 11, 20]
in that we propose parameter replication and parameter
partitioning to speed up the tuning process. We also
present and evaluate a technique to allow Active Harmony
to reconfigure the roles of specific nodes during execution.
We then apply Active Harmony to a coupled application.
An e-commerce system contains multiple components
(proxy server, HTTP server, application server, and
database). Such a large-scale system cannot be tuned for
each individual component. In this paper we show that
Active Harmony is not only useful to improve the
performance, but it is necessary to have such a tuning
mechanism since there is no single best configuration for
all kinds of workloads.

2. System

A cluster-based web service system consists of a

collection of machines. The machines are separated into
sets. Each set (or tier) of machines is focused on serving
different parts of a request. The incoming requests are
handled in a pipeline fashion by different tiers.

In many web services today, there are (conceptually,
at least) three tiers: presentation, middleware, and
database. The presentation tier is the web server that
provides the interface to the client. The middleware tier is
what sits between the web server and the database. It
receives requests for data from the web server,
manipulates the data and queries the database. Then it
generates results using existing data together with answers
from database. Those results are presented to the client
through the presentation tier. The third tier is the database,
which holds the information accessible via the Web. It is
the backend that provides reliable data storage and
transaction semantics.

In this project, we try to improve the overall system
performance by automatic tuning across all tiers using the
Active Harmony system. The performance metric we are
focusing on is the TPC-W benchmark. It is a transactional
web benchmark designed to emulate operations of an e-
commerce site.

2.1. Active Harmony

To provide automatic performance tuning, we

developed the Active Harmony system [9, 11, 20]. Active
Harmony is an infrastructure that allows applications to
become tunable by applying very minimal changes to the
application and library source code. This adaptability
provides applications with a way to improve performance
during a single execution based on the observed
performance. The types of things that can be tuned at
runtime range from parameters such as the size of a read-
ahead parameter to what algorithm is being used (e.g.,
heap sort vs. quick-sort).

Figure 1 shows the Active Harmony automated
runtime tuning system. The Library Specification Layer
provides a uniform API to library users by integrating
different libraries with the same or similar functionality.

The Adaptation Controller is the main part of the
Harmony server. The Adaptability component manages
the values of the different tunable parameters provided by
the applications and changes them for better performance.

Figure 1: Active Harmony Automated Tuning System

The kernel of the adaptation controller is a tuning

algorithm. The algorithm is based on the simplex method
for finding a function's minimum value [14]. In the Active
Harmony system, we treat each tunable parameter as a
variable in an independent dimension. The algorithm
makes use of a simplex, which is a geometrical figure
defined by k+1 connected points in a k-dimensions space.
In 2-dimensions, the simplex is a triangle, and for 3-d
space the simplex is a non-degenerated tetrahedron.

The Nelder-Mead simplex method approximates the
extreme of a function by considering the worst point of the
simplex and forming its symmetrical image through the
center of the opposite (hyper) face. At each step a better
point replaces the worst points and thus moves the simplex
towards the extreme, in our case towards the minimum.

The algorithm described above assumes a well-
defined function and works in a continuous space.
However, neither of these assumptions holds in our
situation. Thus we have adapted the algorithm by simply
using the resulting values from the nearest integer point in
the space to approximate the performance at the selected
point in the continuous space.

2.2. TPC-W Benchmark

The major workload we use when tuning the cluster-
based web service is the TPC-W benchmark. The TPC-W
is a transactional web benchmark designed to mimic
operations of an e-commerce site. The workload explores
a breadth of system components together with the
execution environment. Like all other TPC benchmarks,
the TPC-W benchmark specification is a written document
which defines how to setup, execute, and document a
TPC-W benchmark run.

Web Interaction Browsin

g
(WIPSb
)

Shoppin
g
(WIPS)

Ordering
(WIPSo)

Browse 95 % 80 % 50 %
 Home 29.00 % 16.00 % 9.12 %
 New Products 11.00 % 5.00 % 0.46 %
 Best Sellers 11.00 % 5.00 % 0.46 %
 Product Detail 21.00 % 17.00 % 12.35 %
 Search Request 12.00 % 20.00 % 14.53 %
 Search Results 11.00 % 17.00 % 13.08 %
Order 5 % 20 % 50 %
 Shopping Cart 2.00 % 11.60 % 13.53 %
 Customer Registration 0.82 % 3.00 % 12.86 %
 Buy Request 0.75 % 2.60 % 12.73 %
 Buy Confirm 0.69 % 1.20 % 10.18 %
 Order Inquiry 0.30 % 0.75 % 0.25 %
 Order Display 0.25 % 0.66 % 0.22 %
 Admin Request 0.10 % 0.10 % 0.12 %
 Admin Confirm 0.09 % 0.09 % 0.11 %

Table 1: TPC-W Benchmark Workloads

The two primary performance metrics of the TPC-W

benchmark are the number of Web Interaction Per Second
(WIPS), and a price performance metric defined as
Dollars/WIPS. However, some shopping applications
attract users primarily interested in browsing, while others
attract those planning to purchase. Two secondary metrics

…

Library
Specification
Layer

Application Programming Interface

Monitoring
Component

Library 1 Library n

 Harmony Server

Application

System (Execution Environment)

Library 2

Adaptation
Controller

Parameter(s)

Parameter(s)

Parameter(s)

are defined to provide insight as to how a particular
system will perform under these conditions. WIPSb is
used to refer to the average number of Web Interaction Per
Second completed during the Browsing Interval. WIPSo is
used to refer to the average number of Web Interaction Per
Second completed during the Ordering Interval.

The TPC-W workload is made up of a set of web
interactions. Different workloads assign different relative
weights to each of the web interactions based on the
scenario. In general, these web interactions can be
classified as either “Browse” or “Order” depending on
whether they involve browsing and searching on the site
or whether they play an explicit role in the ordering
process. The details for each workload breakdown are
shown in the Table 1.

2.3. Environment

The summary of the environment used for our

experiment is shown in Table 2. The 10 machines used
include the ones running emulated browsers and the
servers for proxy, HTTP, application and database
services. Each machine is equipped with dual processors,
1 Gbyte memory and runs Linux as the operating system.
For each tier, we select Squid as the proxy server, Tomcat
as the HTTP & application server and MySQL as the
database server. All computer software components are
open-source which allows us to look at source code to
understand system performance. The TPC-W benchmark
version we chose simulates a store that sells
approximately 10,000 items.

Hardware

Processor Dual AMD Athlon 1.67 GHz
Memory 1Gbyte
Network 100Mbps Ethernet
No. of machines 10

Software
Operating System Linux 2.4.18smp
TPC-W benchmark Modified from the PHARM [6]
Proxy Server Squid 2.5 [3]
HTTP & Application Server Tomcat 4.0.4 [1]
Database Server MySQL 3.23.51 [2]

Table 2: Experiment Environment

3. Tuning

Our goal is to improve the overall system

performance using Active Harmony. We first show that
there is no single configuration suitable for all the
workloads. Active Harmony makes the system perform
better by using different configurations when facing
different workloads. Then we investigate Active
Harmony’s scalability as the number of machines grows.
One way to solve this problem is to partition the

parameters into sets. We show how to use an independent
Active Harmony tuning server for each set to speed up the
tuning process. Another method is to tune a representative
set of parameters and use duplicated values on the rest of
nodes. In Section four, we also show how to adjust the
number of nodes in each tier dynamically to reduce hot
spots.

3.1. Impact of Varying Workload

In this experiment we show that the Active Harmony

server can tune the system to adjust each tier’s server to
provide good performance. We use four machines in this
experiment: one machine for the emulated browsers, one
for the proxy server, one for the HTTP & application
server, and one for the database server.

In the experiment, we examine the tuning processes
for two different workloads: browsing and ordering. Both
tuning processes are started using the default configuration.
We then let the system warm up for 100 seconds and
measure the performance (WIPS) for 1000 seconds
followed by 100 seconds for cooling down. We define
such a cycle as one “iteration”1. The Active Harmony
server will adjust the configuration (parameters values)
between two iterations.

0
10
20
30
40
50
60

Browsing Shopping Ordering

Workload Applied

P
er

fo
rm

an
ce

 (
W

IP
S

)

Best configuration for Browsing
Best configuration for Shopping
Best configuration for Ordering
Original configuration

Best configuration after 200 iterations
Browsing Shopping Ordering

Improvement
 compared to the

default configuration
15% 16% 5%

Figure 2: Applying Best Configuration After 200
Iterations to Different Workloads

1 The 1,200 second-iteration is TPC-W benchmark compliance (i.e.,
specified in the TPC-W documentation). The iteration timescale can be
as short as 30 seconds according to our experiment experience.

Figure 2 shows that for different workloads, the
system should apply different configurations. Each
different bar represents the best configurations we
determined after 200 tuning iterations for each of the
workloads. We then apply those best configurations to the
other two workloads for comparison. The results show that
when using a configuration that is tuned for another
workload, the system does not perform as well as using a
configuration that is tuned for the current workload. The
results show that there is no universal configuration good
for all kinds of workloads. The table in Figure 2 shows the
improvements for those best-tuned configurations
compared to the default configuration. The improvements
range from 5% to 16%.

Table 3 shows the details of all Harmony tunable
parameters before, and after tuning for each of the
workloads. The results show for the proxy server, it first
increases the main memory size for the cache to improve
the performance. For the shopping and ordering workloads,
the proxy server tries to cache larger objects in the
memory compared to the browsing workload. For the
HTTP server (which is part of the application server), the
tuning results show that it spawns more threads to handle
the requests during the ordering workload. We believe the
main reason is that most of the requests in the ordering
workload require high latency operations in the database
server (i.e., performing update transactions on the
database). Thus the average response time is longer
compared to other workloads. As long as it is not over the
system capacity, the HTTP server should use more threads
(minProcessors/maxProcessors) and buffer space
(bufferSize) to handle the incoming requests. The waiting
queue capacity should also increase accordingly
(acceptCount) as the results show. The same situation
happens in the worker part (AJP connector) of the
application server. For the database server, the tuning
results show it increases the cache and buffer size when
the utilization for the database is high (i.e., shopping and
ordering workloads). However, it shows that reducing the
join buffer size does not impact performance.

From the results we can see that some parameters
significantly affect the overall system performance such as
the number of threads or the buffer size. However, there
are some parameters that we thought to be performance
related but they turn out not to be important. For example,
the thresholds (cache_swap_low, cache_swap_high) which
control whether the proxy server should swap out objects
do not impact the overall system performance. Since it is
automated, the Active Harmony tuning process is also
helpful for system administrators and developers to
identify those parameters that actually affect system
performance. We plan to further address this issue by
prioritizing the importance of parameters in our future
work.

Best configuration after 200
iterations Tunable parameters Default

config. Browsing Shopping Ordering
Proxy Server

cache_mem 8 13 17 21
cache_swap_low 90 91 86 91
cache_swap_high 95 96 96 96
maximum_object_size 4,096 4,096 4,096 5,888
minimum_object_size 0 0 50 306
maximum_object
_size_in_memory 8 6 256 2,560

store_objects_per
_bucket 20 15 25 105

HTTP & App. Server
minProcessors 5 1 16 102
maxProcessors 20 11 16 131
acceptCount 10 6 21 136
bufferSize 2,048 2,049 3,585 6,657
AJPminProcessors 5 6 26 136
AJPmaxProcessors 20 86 296 161
AJPacceptCount 10 76 306 671

Database Server
binlog_cache_size 32,768 63,488 153,600 284,672
Delayed_insert_limit 100 200 400 700
max_connections 100 201 451 701
delayed_queue_size 1000 2,600 9,100 7,100
Join_buffer_size 8,388,600 407,552 407,552 407,552
Net_buffer_length 16,384 31,744 38,912 34,816
table_cache 64 873 905 761
thread_con 10 81 91 76
thread_stack 65,535 102,400 1,018,880 773,120

Table 3: Tuning Results for Different Workloads

3.2. Cluster Tuning

When the number of servers increases, the number of

tunable parameters also increases. This makes the tuning
process lengthy and the tuning results may not be useful
since the environment could change during the tuning
process.

In the original Active Harmony system, to tune n
parameters at once requires exploring n+1 configurations
before improvements to the system will take effect. If
there are numerous servers in the cluster and each server
contains tens of parameters, the tuning process will be
fairly long. In order to reduce the initial exploration period,
we partition the components inside the cluster into groups
and use separate Active Harmony tuning servers for each
groups. There are several ways to group servers.

When all the machines in the same tier are
homogeneous, we try to partition all the servers into
tuning groups using two methods. The first one is
parameter duplication: we only tune one server for each
tier, and the values for those parameters are duplicated to
other servers in the same tier. This tuning mechanism is
based on the assumptions that (a) servers in the same tier
will have the same or similar behavior for the same
configuration; (b) the workload is evenly distributed
among all the servers in the same tier.

The second way to group nodes, parameter
partitioning, is based on a static work line. Each work line
group consists of at least one server from each tier. A

request to the web cluster system is only handled by
exactly one work line group. In other words, any server in
work line group A will not generate (serve) requests to
(from) a server in work line group B. We use a different
Active Harmony tuning server to tune the parameters for
each work line. The assumption for this tuning mechanism
is that (a) all the work lines are running in parallel; and (b)
there is no interaction between any two of the work lines.

Both of these approaches to grouping nodes require
some domain knowledge about the role of each node.
However, grouping of nodes could easily be exported to
Active Harmony as part of the tuning API.

To compare these two approaches, we tuned the
system using three different tuning methods: default,
parameter duplication and parameter partitioning.

Tuning
method WIPS2 Average

(Std. Dev.)3
Performance
improvement Iterations

None
(No Tuning) 110.4 110.4

(2.1) - -

Default
method 130.6 112.1

(30.0) 18.3% 159

Parameter
duplication 133.7 116.6

(29.5) 21.2% 33

Parameter
partitioning 131.3 121.8

(9.7) 19.0% 107

Table 4: Performance for Different Methods for
Cluster Tuning

Table 4 shows the tuning results. The results for all

three methods are very close. The default method takes the
longest time since there are many parameters and only one
performance result per iteration. The parameter
duplication method provides both a larger performance
improvement and faster convergence to the tuned
configuration. It speeds up the tuning process since the
tunable parameters are distributed to multiple tuning
servers and there are fewer parameters for each tuning
server to tune. The time (iterations) spent for the grouping
by parameter partitioning method is about 2/3 of the
default method.

Based on the time for the tuning process, parameter
duplication tuning seems to be the best. It takes a much
shorter time for tuning. However, if stable performance
during the tuning process is critical, parameter partitioning
by work lines is a reasonable choice.

In the future, we plan to investigate hybrid tuning
using the parameter duplication method first, and then
using a separate tuning server for each group for fine-
granularity tuning.

2 Performance for the best configuration after 200 iterations
3 For the second 100 iterations

4. Automatic Cluster Reconfiguration

One of the advantages for a cluster-based web service

is the ability to reconfigure hardware easily. By
dynamically changing the roles of servers for different
workloads, it is possible to make the best of available
resources.

The parameter tuning part of the Active Harmony
system helps to tune the cluster-based web service at a
fine time granularity. However, when the load is not
balanced among tiers in the web service system, changing
the parameters for all the servers will not provide much
help to solve the problem. Instead, it is necessary to adjust
the infrastructure by changing the number of servers in
each tier dynamically to reduce the load imbalance.

Variable Description

Rij Utilization of resource j on node i
LTij Low threshold for resource j on node i
HTij High threshold for resource j on node i
Mpq Cost to move a job for node p to node q
Ai Average process time on node i
F Configuration cost in terms of time
L List of nodes
Ni Number of jobs on node i
Head(L) First node in the List L
Tier(i) The tier that node i belongs to
M(t) Number of nodes in tier t

Table 5: Variable Description

1. For all node i, resource j do

If Rij > HTij then add i to the list L1
//find out what nodes are highly or over loaded

2. For all node i do
If Rij < LTij for all j then add i to the list L2
//find out what nodes are lightly loaded

3. Sort L1 based on the “degree of urgency4”
 //decide the priority for the nodes to be relieved

4. Let i = Head(L1), find the node k in L2 such that
satisfies (a)(b)(c)

//find out the appropriate node to be reconfigured
(a) Tier(i) ≠ Tier(k)
(b) M(Tier(k)) > 1
(c) F + Nk × Mkm – Nk × Ak is minimal, where k≠ m
and Tier(k) = Tier(m)

5. Reconfigure k such that Tier(i) = Tier(k)

Figure 3: Reconfiguration Algorithm for External
Tuning

4 The degree of urgency for each node depends on the characteristics of
the application. It may vary from case to case. For example, over loading
the CPU may cause bigger problem than utilizing all the network
bandwidth for some applications. Therefore, nodes with over-loaded
CPU will have higher priority than nodes whose network bandwidth is
highly utilized.

The Active Harmony system applies a simple
mechanism to achieve load balance among tiers. While the
tuning is in progress, the Active Harmony system
monitors the resource utilization for all nodes of all tiers.
The resources that are monitored include CPU load,
memory usage, network bandwidth used and disk I/O
activity (Currently the system information is obtained
using Linux SAR utility tool). Periodically, Active
Harmony detects whether (1) there is a resource on node
A that is over utilized5, (2) all the resources on node B are
under utilized and node B is suitable reconfiguration. If
both situation (1) and (2) exist, Active Harmony tries to
reconfigure node B to run the same server process as node
A.

Unlike parameter tuning, which is done for each
iteration, the reconfiguration algorithm is run at a lower
frequency (e.g., every 50 iterations) since it is designed to
react to longer term trends, and incurs a greater overhead
to make changes. Table 5 shows the definition for
variables in the algorithm and Figure 3 shows the concept
of the reconfiguration algorithm.

Step 1 finds out what nodes are over loaded. It checks
the resource utilization against the predefined high
threshold. Step 2 tries to find nodes that are lightly loaded.
If all the resources on the node are idling most of the time
(i.e., utilization is smaller than the lower threshold), the
node is considered under utilized. Step 3 finds out what is
the most “urgent” node that should be relieved first. Step 4
checks in order to ensure correct operation, that there is at
least one node left in each tier, and decides if the
reconfiguration should be done immediately (by moving
existing requests to the neighbor nodes in the same tier) or
if it should wait until all existing requests finish. Finally
Step 5 does the reconfiguration.

F + Nk M× km – Nk × Ak (1)

When the result of equation (1) for the selected node k

in Step 4(c) is non-negative, the Active Harmony system
will not reconfigure node k until all the jobs on it are
finished. This is because it will be more cost-effective to
wait than to reconfigure node k immediately. On the other
hand, when the result of the equation is negative, the
Active Harmony system will reconfigure node k
immediately. This is because the cost for immediate
reconfiguration will be less than waiting for the system to
be idle to reconfigure.

Active Harmony can automatically perform node
reconfiguration without taking the system down. While
one node is being reconfigured from one tier to another,
all the remaining nodes in the system are still serving
requests normally.

5 Static thresholds (e.g., CPU idle time is less or equal than 5%) are used
in the current implementation.

0

50

100

150

200

0 50 100 150 200

Iterations

Pe
rf

or
m

an
ce

 (W
IP

S)

Without reconfiguration
With reconfiguration

(a) One node moved from the proxy server tier to the
application server tier

(Workload changes from browsing to ordering)

0
20
40
60
80

100
120
140

0 50 100 150 200
Iterations

Pe
rf

or
m

an
ce

 (W
IP

S)

Without reconfiguration
With reconfiguration

(b) One node moved from the application server tier to

the proxy server tier (Browsing workload)
Figure 4: Reconfiguration experiment results

Figure 4 shows the experimental results when

applying the reconfiguration algorithm. The initial
configuration for Figure 4(a) has four nodes serving the
proxy tier and another two nodes for the application tier;
all six nodes are homogeneous. The experiment starts with
a browsing workload and changes to an ordering workload
after the 90th iteration (The performance gains between
90th and 100th iterations are due to different workloads).
We forced the Active Harmony system do the dynamic
adjustment checking exactly once right after the 100th
iteration of the tuning process. Figure 4(a) shows the
performance improvement when Active Harmony decides
to move a node from the proxy server tier to the
application server tier based on the algorithm. This is
expected since when the system has a workload dominated
by ordering, it requires more application servers to handle
the dynamic data from the database. On the other hand,
most browsing workloads require static data that can be
served from the proxy servers. Before the adjustment, the
application servers are highly loaded (CPU utilization is

always close to 100%) and some proxy servers are idling
most of the time (CPU utilization is close to 0% and there
are very few network or disk I/O requests). After the
adjustment, the average utilization of the application
servers is lowered while the average loading for the proxy
servers increases a little. The bottleneck of the whole
system is relieved and the system performance is
improved about 62%.

Figure 4(b) shows the performance improvement
when given a different configuration at the beginning.
There are six nodes, two of them serving as the proxy
servers and four serving as application nodes. However,
the proxy servers are highly utilized under the browsing
workload. After the dynamic adjustment checking after
the 100th iteration, it moved a node from the application
server tier to the proxy server tier for the adjustment
automatically. The CPU and disk I/O are highly loaded on
the proxy servers before the adjustment and some
application servers are idling most of the time. After the
adjustment, the average load on all proxy servers is
lowered, the average utilization on the remaining
application servers is increased and the system
performance is improved for about 70%.

5. Discussion

To tune existing software such as the Squid proxy

server, we needed to make some minimal modifications to
add calls to the Active Harmony API. However, some
variables are only referenced once after the program starts
execution (i.e., those variables read from the configuration
script file). Rather than make more extensive changes to
the program, the Active Harmony system restarts the
server for each of the tuning iterations automatically. Our
experiments take all costs of parameter changes (including
servers need to be restarted and their warm up time) into
consideration.

Another issue is the hard coded (compile time) limits
in the applications. In order to make the system tunable,
some limits had to be increased. Again, a more significant
coding effort could have been used to convert these hard-
coded limits into ones that could be changed at runtime.
For example, to increase the number of files opened
simultaneously, the value in the /proc/sys/fs/file-max on
Linux needed to be increased. Otherwise the number of
files opened simultaneously would be limited. In this case,
recompilation of the linux kernel would be necessary.
Besides the kernel, the linux operating system also
imposes similar constraints in the /etc/security/limits.conf
and /etc/sysctl.conf .

Active Harmony helps the cluster-based web service
adapt itself when facing different workloads. It shows the
ability to tune a large-scale system automatically. The
tuning includes the parameter adjustment inside each
machine and explicit configuration changes for load
balancing. This performance improvement is difficult to

achieve by tuning each single machine independently
since it is extremely difficult to decide the contribution of
each individual machine to the performance of the whole
system. Another advantage is that the user does not need
to have detailed insight knowledge about each component.
He or she can simple apply the Active Harmony system to
all the parameters that may be performance related.

6. Related Work

There are several projects that are trying to develop

techniques to allow applications to be responsive to their
available resources or that allow them to be tuned at
runtime. The Falcon project [8] focuses on computational
steering. It provides a way for users to alter the behavior
of an application under execution. The execution results
are also changed based on the steering mechanism. The
Active Harmony project also allows user to alter the
configuration during execution but it is focusing on
performance tuning rather than the experiment result.

The Autopilot project [16, 17] allows applications to
be adapted in an automated way. It uses sensors to extract
quantitative and qualitative performance data from
executing applications, and provides the requisite data for
decision-making. The kernel of the decision process for
Autopilot is fuzzy logic. Their actuators execute the
decision by changing parameter values of applications or
resource management policies of the underlying system.
The Active Harmony project differs from the Autopilot
project in that it tries to coordinate the use of resources by
multiple libraries and applications rather than focusing on
a single application.

The AppLes project [5] and the Odyssey project [15]
focus on resource awareness at the application level. In
those systems, applications are informed of resource
changes and provided with a list of available resource sets.
Then, each application allocates the resources based upon
a customized scheduling to maximize its own performance.
Active Harmony encourages programmers to expose their
needs in terms of options and their characteristics rather
than as selecting from specific resources alternatives
described by the system.

The ATLAS [21] project has developed automatically
tuned linear algebra libraries. They develop a
methodology for the automatic generation of highly
efficient basic linear algebra routines for a given
microprocessor. By using a code generator that probes and
searches the system for an optimal set of parameters, it can
produce highly optimized matrix multiply for a wide range
of architectures. The difference between our work and
ATLAS is that our work focuses on general applications
that use program libraries rather than that of a specific
library.

The Nimrod/O project [4] tries to reduce the search
space for engineering design. It applies multiple tuning
algorithms including Simplex, P-BFGS, Divide and

Conquer, and Simulated Annealing. The design for the
aerofoil may need to search for the global optima instead
the local optima. The Active Harmony project focuses on
the performance issue. Therefore, operating points on
local optima are still acceptable in most of the cases since
they are also good enough from the performance point of
view.

Another TPC-W benchmark implementation available
from an academic institute is from the DynaServer project
[19]. The project studies the design of scalable, high-
performance and highly available e-business servers.

Others have discussed cluster-based web services with
different performance metrics. Joel L. Wolf’s work [22]
proposed a scheme, which attempts to optimally balance
the load on the servers of a clustered Web farm. They try
to solve the performance problem by achieving minimal
average response time for customer requests, and thus
ultimately achieve maximal customer throughput.

ADAPTLOAD [18] developed by Riska, A., et al.
models clustered web server as a front-end dispatcher and
back-end nodes. They use an online algorithm to decide
the share of the total workload for each node to achieve
load balance. They treat back-end nodes as static while
Active Harmony tries to configure the clustered system
properly to achieve better performance.

Chen, et al. [7] use a reconfiguration mechanism to
improve the throughput of a clustered system. Their focus
is to avoid letting a small number of running jobs with
unexpectedly large memory allocation block the execution
of the majority jobs in the cluster. Active Harmony
focuses on a general mechanism to improve overall
system performance by several means.

 Kalogeraki, et al. [10] migrate objects or jobs from
hotspots in the cluster to improve the performance. Their
goal is to achieve load balance while Active Harmony
focuses on performance improvement.

Gage [13] focuses on load distribution to provide the
performance guarantee for cluster-based Internet services.
This involves support from network level while the Active
Harmony only tries to tune the system to achieve better
performance.

Levy, et al. [12] use a queuing model to analyze a
cluster-based web service system. Based on the model
built, they implement a prototype for a performance
management system that is transparent to the system to be
tuned.

The major difference between Active Harmony and
these works above is that Active Harmony provides a
general solution that does not require the user to have
domain specific knowledge. The user does not need to
analyze the details of the system components or build
models.

7. Conclusion

The main contribution for this paper is that we apply

Active Harmony to a coupled system of independent
applications. We applied Active Harmony to a real-world
large-scale system and evaluated the result using a
practical benchmark. The tuning includes the parameters
adjustment inside each machine and the explicit
configuration change for load balancing. All this is done
without the user needing to have domain specific
information.

The performance improvement is difficult to achieve
when tuning individual components of the system
separately. Since no single universal configuration is good
for all kinds of workloads, the cluster based web service
system needs a tuning mechanism like the Active
Harmony. Active Harmony adjusts the tunable parameters
based on the observed performance results to improve the
overall system performance. The experiment results show
that the Active Harmony system improves the system
performance from 5% to 16% depending on the workload.

Scalability becomes a critical issue when tuning large-
scale systems with numerous parameters. We investigated
two approaches for tuning – parameter replication and
parameter partitioning. This is helpful to speed up the
tuning process so the tuning results will not be out of date.
Parameter duplication helps to speedup the tuning process
while parameter partitioning makes the tuning process
smoother with stable performance.

Dynamically adjusting the components of the cluster,
the performance is improved by better load balancing. In
our experiments, the system throughput is improved up to
70%. All the results demonstrate that Active Harmony can
bring significant performance improvement to the cluster-
based web service system and permit new ways to adapt
applications to dynamic environments.

Acknowledgement

This work was supported in part by NSF award EIA-

0080206 and DOE Grant DE-FG02-01ER25510.

References

1. The Apache Jakarta Project http://jakarta.apache.org/.
2. MySQL Database Server, MySQL AB

http://www.mysql.com.
3. Squid Web Proxy Cache http://www.squid-cache.org/.
4. Abramson, D., et al. An Automatic Design Optimization

Tool and its Application to Computational Fluid Dynamics.
in SC. 2001. Denver.

5. Berman, F. and R. Wolski. Scheduling from the perspective
of the application. in Proceedings of 5th IEEE International
Symposium on High Performance Distributed Computing.
1996. Syracuse, NY, USA 6-9 Aug. 1996.

6. Bezenek, T., et al., Java TPC-W Implementation
Distribution http://www.ece.wisc.edu/~pharm/tpcw.shtml.

7. Chen, S., L. Xiao, and X. Zhang. Adaptive and Virtual
Reconfigurations for Effective Dynamic Job Scheduling in
Cluster Systems. in 22 nd International Conference on
Distributed Computing Systems (ICDCS'02). 2002. Vienna,
Austria.

8. Gu, W., et al. Falcon: On-line Monitoring and Steering of
Large-Scale Parallel Programs. in Frontiers '95. 1995.
McLean, VA: IEEE Press.

9. Hollingsworth, J.K. and P.J. Keleher. Prediction and
Adaptation in Active Harmony. in The 7th International
Symposium on High Performance Distributed Computing.
1998. Chicago.

10. Kalogeraki, V., P.M. Melliar-Smith, and L.E. Moser.
Dynamic Migration Algorithms for Distributed Object
Systems. in The 21st International Conference on
Distributed Computing Systems. 2001. Mesa, AZ.

11. Keleher, P.J., J.K. Hollingsworth, and D. Perkovic.
Exposing Application Alternatives. in ICDCS. 1999. Austin,
TX.

12. Levy, R., et al. Performance Management for Cluster Based
Web Services. in The 8th IFIP/IEEE International

Symposium on Integrated Network Management (IM2003).
2003. Colorado Springs, Colorado, USA.

13. Li, C., et al. Performance Guarantee for Cluster-Based
Internet Services. in The 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS
2003). 2003. Providence, Rhode Island.

14. Nelder, J.A. and R. Mead, A Simplex Methd for Function
Minimization. Comput. J., 1965. 7(4): p. 308--313.

15. Noble, B.D., et al. Agile Application-Aware Adaptation for
Mobility. in 16th ACM Symposium on Operating Systems
Principals. 1997.

16. Ribler, R.L., H. Simitci, and D.A. Reed, The Autopilot
Performance-Directed Adaptive Control System. Future
Generation Computer Systems, special issue (Performance
Data Mining), 2001. 18(1): p. 175-187.

17. Ribler, R.L., et al. Autopilot: Adaptive Control of
Distributed Applications. in High Performance Distributed
Computing. 1998. Chicago, IL.

18. Riska, A., et al. ADAPTLOAD: Effective Balancing in
Custered Web Servers Under Transient Load Conditions. in
22 nd International Conference on Distributed Computing
Systems (ICDCS'02). 2002.

19. Snavely, A., et al. A Framework for Application
Performance Modeling and Prediction. in Supercomputing
2002. 2002. Baltimore, MD.

20. Tapus, C., I.-H. Chung, and J.K. Hollingsworth. Active
Harmony: Towards Automated Performance Tuning. in
SC'02. 2002. Baltimore, Maryland.

21. Whaley, R.C. and J.J. Dongarra. Automatically tuned linear
algebra software (ATLAS). in Supercomputing. 1998.
Orlando, FL.

22. Wolf, J. and P.S. Yu, On Balancing the Load in a Clustered
Web Farm. ACM Transactions on Internet Technology,
2001. 1(2): p. 231-261.

	Introduction
	System
	Active Harmony
	TPC-W Benchmark

	Environment

	Tuning
	Impact of Varying Workload
	Cluster Tuning

	Automatic Cluster Reconfiguration
	Discussion
	Related Work
	Conclusion

