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Abstract 
Active Harmony provides a way to automate performance 
tuning. In this paper, we apply the Active Harmony system 
to improve the performance of a cluster-based web service 
system. The performance improvement cannot easily be 
achieved by tuning individual components for such a 
system. The experimental results show that there is no 
single configuration for the system that performs well for 
all kinds of workloads. By tuning the parameters, Active 
Harmony helps the system adapt to different workloads 
and improve the performance up to 16%. For scalability, 
we demonstrate how to reduce the time when tuning a 
large system with many tunable parameters.  Finally an 
algorithm is proposed to automatically adjust the 
structure of cluster-based web systems, and the system 
throughput is improved up to 70% using this technique.  
 
 

1. Introduction 
 
Online e-commerce sites are one of the main 

applications on the Internet today. They are used as a 
standard mechanism for online information distribution 
and exchange. In order to provide such service, e-
commerce sites require large online web systems. The 
systems must be able to accommodate widely varying 
service demands. They should also be adaptive when the 
number or nature of requests changes.  

Clusters of commodity workstations interconnected by 
a high-speed network are frequently used to meet these 
challenges. The infrastructure can tolerate partial failures 
and allows scaling up by adding more components. They 
are also representative of other types of coupled 
distributed systems. 

When these systems are designed and built, the 
developers tend to set the default configuration of the 
system (e.g., number of processes forked, memory size 
allocated) conservatively (i.e., appropriate values but not 
well tuned). Therefore, the customer environment may not 
be fully utilized and thus the performance for such a 
system may be improved if its configuration is “tuned” 
appropriately. 

While other clustered-based web service performance 
tuning projects require experts to analyze the internals of 

the components and improve the performance based on 
the models built, the Active Harmony system is designed 
to provide a general solution that can help systems become 
adaptive to their execution environment as well as to 
changes in workload. By improving the performance 
iteratively, the Active Harmony system changes 
performance optimization from post-mortem to real-time 
steering. And the most important of all, it is not necessary 
for the Active Harmony user to have detailed insight 
knowledge of the system to be tuned. 

This paper differs from our previous work [9, 11, 20] 
in that we propose parameter replication and parameter 
partitioning to speed up the tuning process. We also 
present and evaluate a technique to allow Active Harmony 
to reconfigure the roles of specific nodes during execution. 
We then apply Active Harmony to a coupled application. 
An e-commerce system contains multiple components 
(proxy server, HTTP server, application server, and 
database). Such a large-scale system cannot be tuned for 
each individual component. In this paper we show that 
Active Harmony is not only useful to improve the 
performance, but it is necessary to have such a tuning 
mechanism since there is no single best configuration for 
all kinds of workloads.   

2. System 
 
A cluster-based web service system consists of a 

collection of machines. The machines are separated into 
sets. Each set (or tier) of machines is focused on serving 
different parts of a request. The incoming requests are 
handled in a pipeline fashion by different tiers.  

In many web services today, there are (conceptually, 
at least) three tiers: presentation, middleware, and 
database. The presentation tier is the web server that 
provides the interface to the client. The middleware tier is 
what sits between the web server and the database. It 
receives requests for data from the web server, 
manipulates the data and queries the database. Then it 
generates results using existing data together with answers 
from database. Those results are presented to the client 
through the presentation tier. The third tier is the database, 
which holds the information accessible via the Web. It is 
the backend that provides reliable data storage and 
transaction semantics. 



In this project, we try to improve the overall system 
performance by automatic tuning across all tiers using the 
Active Harmony system. The performance metric we are 
focusing on is the TPC-W benchmark. It is a transactional 
web benchmark designed to emulate operations of an e-
commerce site.  

2.1. Active Harmony 
 
To provide automatic performance tuning, we 

developed the Active Harmony system [9, 11, 20]. Active 
Harmony is an infrastructure that allows applications to 
become tunable by applying very minimal changes to the 
application and library source code. This adaptability 
provides applications with a way to improve performance 
during a single execution based on the observed 
performance. The types of things that can be tuned at 
runtime range from parameters such as the size of a read-
ahead parameter to what algorithm is being used (e.g., 
heap sort vs. quick-sort). 

Figure 1 shows the Active Harmony automated 
runtime tuning system. The Library Specification Layer 
provides a uniform API to library users by integrating 
different libraries with the same or similar functionality.  

The Adaptation Controller is the main part of the 
Harmony server. The Adaptability component manages 
the values of the different tunable parameters provided by 
the applications and changes them for better performance. 

 

 
Figure 1: Active Harmony Automated Tuning System 

 
The kernel of the adaptation controller is a tuning 

algorithm. The algorithm is based on the simplex method 
for finding a function's minimum value [14]. In the Active 
Harmony system, we treat each tunable parameter as a 
variable in an independent dimension. The algorithm 
makes use of a simplex, which is a geometrical figure 
defined by k+1 connected points in a k-dimensions space. 
In 2-dimensions, the simplex is a triangle, and for 3-d 
space the simplex is a non-degenerated tetrahedron.  

The Nelder-Mead simplex method approximates the 
extreme of a function by considering the worst point of the 
simplex and forming its symmetrical image through the 
center of the opposite (hyper) face. At each step a better 
point replaces the worst points and thus moves the simplex 
towards the extreme, in our case towards the minimum.  

The algorithm described above assumes a well-
defined function and works in a continuous space.  
However, neither of these assumptions holds in our 
situation. Thus we have adapted the algorithm by simply 
using the resulting values from the nearest integer point in 
the space to approximate the performance at the selected 
point in the continuous space. 

2.2. TPC-W Benchmark 
 

The major workload we use when tuning the cluster-
based web service is the TPC-W benchmark. The TPC-W 
is a transactional web benchmark designed to mimic 
operations of an e-commerce site. The workload explores 
a breadth of system components together with the 
execution environment. Like all other TPC benchmarks, 
the TPC-W benchmark specification is a written document 
which defines how to setup, execute, and document a 
TPC-W benchmark run.  

 
Web Interaction Browsin

g 
(WIPSb
) 

Shoppin
g 
(WIPS) 

Ordering 
(WIPSo) 

Browse 95 % 80 % 50 % 
 Home 29.00 % 16.00 % 9.12 % 
 New Products 11.00 % 5.00 % 0.46 % 
 Best Sellers 11.00 % 5.00 % 0.46 % 
 Product Detail 21.00 % 17.00 % 12.35 % 
 Search Request 12.00 % 20.00 % 14.53 % 
 Search Results 11.00 % 17.00 % 13.08 % 
Order 5 % 20 % 50 % 
 Shopping Cart 2.00 % 11.60 % 13.53 % 
 Customer Registration 0.82 % 3.00 % 12.86 % 
 Buy Request 0.75 % 2.60 % 12.73 % 
 Buy Confirm 0.69 % 1.20 % 10.18 % 
 Order Inquiry 0.30 % 0.75 % 0.25 % 
 Order Display 0.25 % 0.66 % 0.22 % 
 Admin Request 0.10 % 0.10 % 0.12 % 
 Admin Confirm 0.09 % 0.09 % 0.11 % 

Table 1: TPC-W Benchmark Workloads 
 
The two primary performance metrics of the TPC-W 

benchmark are the number of Web Interaction Per Second 
(WIPS), and a price performance metric defined as 
Dollars/WIPS. However, some shopping applications 
attract users primarily interested in browsing, while others 
attract those planning to purchase. Two secondary metrics 
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are defined to provide insight as to how a particular 
system will perform under these conditions. WIPSb is 
used to refer to the average number of Web Interaction Per 
Second completed during the Browsing Interval. WIPSo is 
used to refer to the average number of Web Interaction Per 
Second completed during the Ordering Interval. 

The TPC-W workload is made up of a set of web 
interactions. Different workloads assign different relative 
weights to each of the web interactions based on the 
scenario. In general, these web interactions can be 
classified as either “Browse” or “Order” depending on 
whether they involve browsing and searching on the site 
or whether they play an explicit role in the ordering 
process. The details for each workload breakdown are 
shown in the Table 1. 

2.3. Environment 
 
The summary of the environment used for our 

experiment is shown in Table 2.  The 10 machines used 
include the ones running emulated browsers and the 
servers for proxy, HTTP, application and database 
services. Each machine is equipped with dual processors, 
1 Gbyte memory and runs Linux as the operating system. 
For each tier, we select Squid as the proxy server, Tomcat 
as the HTTP & application server and MySQL as the 
database server. All computer software components are 
open-source which allows us to look at source code to 
understand system performance. The TPC-W benchmark 
version we chose simulates a store that sells 
approximately 10,000 items. 

 
Hardware 

Processor Dual AMD Athlon 1.67 GHz 
Memory 1Gbyte 
Network 100Mbps Ethernet 
No. of machines 10 

Software 
Operating System Linux 2.4.18smp 
TPC-W benchmark Modified from the PHARM [6]
Proxy Server Squid 2.5 [3] 
HTTP & Application Server Tomcat 4.0.4 [1] 
Database Server MySQL 3.23.51 [2] 

Table 2: Experiment Environment 

3. Tuning 
 
Our goal is to improve the overall system 

performance using Active Harmony.  We first show that 
there is no single configuration suitable for all the 
workloads. Active Harmony makes the system perform 
better by using different configurations when facing 
different workloads. Then we investigate Active 
Harmony’s scalability as the number of machines grows. 
One way to solve this problem is to partition the 

parameters into sets. We show how to use an independent 
Active Harmony tuning server for each set to speed up the 
tuning process. Another method is to tune a representative 
set of parameters and use duplicated values on the rest of 
nodes. In Section four, we also show how to adjust the 
number of nodes in each tier dynamically to reduce hot 
spots. 

3.1. Impact of Varying Workload 
 
In this experiment we show that the Active Harmony 

server can tune the system to adjust each tier’s server to 
provide good performance. We use four machines in this 
experiment: one machine for the emulated browsers, one 
for the proxy server, one for the HTTP & application 
server, and one for the database server. 

In the experiment, we examine the tuning processes 
for two different workloads: browsing and ordering. Both 
tuning processes are started using the default configuration. 
We then let the system warm up for 100 seconds and 
measure the performance (WIPS) for 1000 seconds 
followed by 100 seconds for cooling down. We define 
such a cycle as one “iteration”1. The Active Harmony 
server will adjust the configuration (parameters values) 
between two iterations.  
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Best configuration after 200 iterations 
Browsing Shopping Ordering 

Improvement 
 compared to the 

default configuration
15% 16% 5% 

Figure 2: Applying Best Configuration After 200 
Iterations to Different Workloads 

 

                                                 
1  The 1,200 second-iteration is TPC-W benchmark compliance (i.e., 
specified in the TPC-W documentation). The iteration timescale can be 
as short as 30 seconds according to our experiment experience. 



Figure 2 shows that for different workloads, the 
system should apply different configurations. Each 
different bar represents the best configurations we 
determined after 200 tuning iterations for each of the 
workloads. We then apply those best configurations to the 
other two workloads for comparison. The results show that 
when using a configuration that is tuned for another 
workload, the system does not perform as well as using a 
configuration that is tuned for the current workload. The 
results show that there is no universal configuration good 
for all kinds of workloads. The table in Figure 2 shows the 
improvements for those best-tuned configurations 
compared to the default configuration. The improvements 
range from 5% to 16%. 

Table 3 shows the details of all Harmony tunable 
parameters before, and after tuning for each of the 
workloads. The results show for the proxy server, it first 
increases the main memory size for the cache to improve 
the performance. For the shopping and ordering workloads, 
the proxy server tries to cache larger objects in the 
memory compared to the browsing workload. For the 
HTTP server (which is part of the application server), the 
tuning results show that it spawns more threads to handle 
the requests during the ordering workload. We believe the 
main reason is that most of the requests in the ordering 
workload require high latency operations in the database 
server (i.e., performing update transactions on the 
database). Thus the average response time is longer 
compared to other workloads. As long as it is not over the 
system capacity, the HTTP server should use more threads 
(minProcessors/maxProcessors) and buffer space 
(bufferSize) to handle the incoming requests. The waiting 
queue capacity should also increase accordingly 
(acceptCount) as the results show. The same situation 
happens in the worker part (AJP connector) of the 
application server. For the database server, the tuning 
results show it increases the cache and buffer size when 
the utilization for the database is high (i.e., shopping and 
ordering workloads). However, it shows that reducing the 
join buffer size does not impact performance. 

From the results we can see that some parameters 
significantly affect the overall system performance such as 
the number of threads or the buffer size. However, there 
are some parameters that we thought to be performance 
related but they turn out not to be important. For example, 
the thresholds (cache_swap_low, cache_swap_high) which 
control whether the proxy server should swap out objects 
do not impact the overall system performance. Since it is 
automated, the Active Harmony tuning process is also 
helpful for system administrators and developers to 
identify those parameters that actually affect system 
performance. We plan to further address this issue by 
prioritizing the importance of parameters in our future 
work. 

 
 

Best configuration after 200 
iterations Tunable parameters Default 

config. Browsing Shopping Ordering
Proxy Server   

cache_mem 8 13 17 21
cache_swap_low 90 91 86 91
cache_swap_high 95 96 96 96
maximum_object_size 4,096 4,096 4,096 5,888
minimum_object_size 0 0 50 306
maximum_object 
_size_in_memory 8 6 256 2,560

store_objects_per 
_bucket 20 15 25 105

HTTP & App. Server   
minProcessors 5 1 16 102
maxProcessors 20 11 16 131
acceptCount 10 6 21 136
bufferSize 2,048 2,049 3,585 6,657
AJPminProcessors 5 6 26 136
AJPmaxProcessors 20 86 296 161
AJPacceptCount 10 76 306 671

Database Server   
binlog_cache_size 32,768 63,488 153,600 284,672
Delayed_insert_limit 100 200 400 700
max_connections 100 201 451 701
delayed_queue_size 1000 2,600 9,100 7,100
Join_buffer_size 8,388,600 407,552 407,552 407,552
Net_buffer_length 16,384 31,744 38,912 34,816
table_cache 64 873 905 761
thread_con 10 81 91 76
thread_stack 65,535 102,400 1,018,880 773,120

Table 3: Tuning Results for Different Workloads 

3.2. Cluster Tuning 
 
When the number of servers increases, the number of 

tunable parameters also increases. This makes the tuning 
process lengthy and the tuning results may not be useful 
since the environment could change during the tuning 
process.  

In the original Active Harmony system, to tune n 
parameters at once requires exploring n+1 configurations 
before improvements to the system will take effect. If 
there are numerous servers in the cluster and each server 
contains tens of parameters, the tuning process will be 
fairly long. In order to reduce the initial exploration period, 
we partition the components inside the cluster into groups 
and use separate Active Harmony tuning servers for each 
groups. There are several ways to group servers. 

When all the machines in the same tier are 
homogeneous, we try to partition all the servers into 
tuning groups using two methods. The first one is 
parameter duplication: we only tune one server for each 
tier, and the values for those parameters are duplicated to 
other servers in the same tier. This tuning mechanism is 
based on the assumptions that (a) servers in the same tier 
will have the same or similar behavior for the same 
configuration; (b) the workload is evenly distributed 
among all the servers in the same tier.  

The second way to group nodes, parameter 
partitioning, is based on a static work line. Each work line 
group consists of at least one server from each tier. A 



request to the web cluster system is only handled by 
exactly one work line group. In other words, any server in 
work line group A will not generate (serve) requests to 
(from) a server in work line group B. We use a different 
Active Harmony tuning server to tune the parameters for 
each work line. The assumption for this tuning mechanism 
is that (a) all the work lines are running in parallel; and (b) 
there is no interaction between any two of the work lines.  

Both of these approaches to grouping nodes require 
some domain knowledge about the role of each node. 
However, grouping of nodes could easily be exported to 
Active Harmony as part of the tuning API. 

To compare these two approaches, we tuned the 
system using three different tuning methods: default, 
parameter duplication and parameter partitioning.  

 
Tuning 
method WIPS2 Average 

(Std. Dev.)3
Performance 
improvement Iterations

None  
(No Tuning) 110.4 110.4 

(2.1) - - 

Default 
method 130.6 112.1 

(30.0) 18.3% 159 

Parameter 
duplication 133.7 116.6 

(29.5) 21.2% 33 

Parameter 
partitioning 131.3 121.8 

(9.7) 19.0% 107 

Table 4: Performance for Different Methods for 
Cluster Tuning 

 
Table 4 shows the tuning results. The results for all 

three methods are very close. The default method takes the 
longest time since there are many parameters and only one 
performance result per iteration. The parameter 
duplication method provides both a larger performance 
improvement and faster convergence to the tuned 
configuration. It speeds up the tuning process since the 
tunable parameters are distributed to multiple tuning 
servers and there are fewer parameters for each tuning 
server to tune. The time (iterations) spent for the grouping 
by parameter partitioning method is about 2/3 of the 
default method. 

Based on the time for the tuning process, parameter 
duplication tuning seems to be the best. It takes a much 
shorter time for tuning. However, if stable performance 
during the tuning process is critical, parameter partitioning 
by work lines is a reasonable choice.  

In the future, we plan to investigate hybrid tuning 
using the parameter duplication method first, and then 
using a separate tuning server for each group for fine-
granularity tuning. 

                                                 
2 Performance for the best configuration after 200 iterations 
3 For the second 100 iterations 

4. Automatic Cluster Reconfiguration 
 
One of the advantages for a cluster-based web service 

is the ability to reconfigure hardware easily. By 
dynamically changing the roles of servers for different 
workloads, it is possible to make the best of available 
resources. 

The parameter tuning part of the Active Harmony 
system helps to tune the cluster-based web service at a 
fine time granularity. However, when the load is not 
balanced among tiers in the web service system, changing 
the parameters for all the servers will not provide much 
help to solve the problem. Instead, it is necessary to adjust 
the infrastructure by changing the number of servers in 
each tier dynamically to reduce the load imbalance.  

 
Variable Description 

Rij Utilization of resource j on node i 
LTij Low threshold for resource j on node i 
HTij High threshold for resource j on node i 
Mpq Cost to move a job for node p to node q 
Ai Average process time on node i 
F Configuration cost in terms of time 
L List of nodes 
Ni Number of jobs on node i 
Head(L) First node in the List L 
Tier(i) The tier that node i belongs to 
M(t) Number of nodes in tier t 

Table 5: Variable Description 
 
1. For all node i, resource j do  

If Rij > HTij then add i to the list L1  
//find out what nodes are highly or over loaded 

2. For all node i do 
If Rij < LTij  for all j then add i to the list L2  
//find out what nodes are lightly loaded 

3. Sort L1 based on the “degree of urgency4”  
 //decide the priority for the nodes to be relieved  

4. Let i = Head(L1), find the node k in L2 such that 
satisfies (a)(b)(c)     

//find out the appropriate node to be reconfigured 
(a) Tier(i) ≠  Tier(k) 
(b) M(Tier(k))  > 1 
(c) F +  Nk ×  Mkm – Nk ×  Ak is minimal, where k≠ m 
and Tier(k) = Tier(m) 

5. Reconfigure k such that Tier(i) = Tier(k) 
 

Figure 3: Reconfiguration Algorithm for External 
Tuning 

 

                                                 
4 The degree of urgency for each node depends on the characteristics of 
the application. It may vary from case to case. For example, over loading 
the CPU may cause bigger problem than utilizing all the network 
bandwidth for some applications. Therefore, nodes with over-loaded 
CPU will have higher priority than nodes whose network bandwidth is 
highly utilized. 



The Active Harmony system applies a simple 
mechanism to achieve load balance among tiers. While the 
tuning is in progress, the Active Harmony system 
monitors the resource utilization for all nodes of all tiers. 
The resources that are monitored include CPU load, 
memory usage, network bandwidth used and disk I/O 
activity (Currently the system information is obtained 
using Linux SAR utility tool). Periodically, Active 
Harmony detects whether (1) there is a resource on node 
A that is over utilized5, (2) all the resources on node B are 
under utilized and node B is suitable reconfiguration. If 
both situation (1) and (2) exist, Active Harmony tries to 
reconfigure node B to run the same server process as node 
A. 

Unlike parameter tuning, which is done for each 
iteration, the reconfiguration algorithm is run at a lower 
frequency (e.g., every 50 iterations) since it is designed to 
react to longer term trends, and incurs a greater overhead 
to make changes. Table 5 shows the definition for 
variables in the algorithm and Figure 3 shows the concept 
of the reconfiguration algorithm. 

Step 1 finds out what nodes are over loaded. It checks 
the resource utilization against the predefined high 
threshold. Step 2 tries to find nodes that are lightly loaded. 
If all the resources on the node are idling most of the time 
(i.e., utilization is smaller than the lower threshold), the 
node is considered under utilized. Step 3 finds out what is 
the most “urgent” node that should be relieved first. Step 4 
checks in order to ensure correct operation, that there is at 
least one node left in each tier, and decides if the 
reconfiguration should be done immediately (by moving 
existing requests to the neighbor nodes in the same tier) or 
if it should wait until all existing requests finish. Finally 
Step 5 does the reconfiguration.  

 
F +  Nk  M× km – Nk ×  Ak                        (1) 

 
When the result of equation (1) for the selected node k 

in Step 4(c) is non-negative, the Active Harmony system 
will not reconfigure node k until all the jobs on it are 
finished. This is because it will be more cost-effective to 
wait than to reconfigure node k immediately. On the other 
hand, when the result of the equation is negative, the 
Active Harmony system will reconfigure node k 
immediately. This is because the cost for immediate 
reconfiguration will be less than waiting for the system to 
be idle to reconfigure. 

Active Harmony can automatically perform node 
reconfiguration without taking the system down. While 
one node is being reconfigured from one tier to another, 
all the remaining nodes in the system are still serving 
requests normally. 

 

                                                 
5 Static thresholds (e.g., CPU idle time is less or equal than 5%) are used 
in the current implementation. 
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(b) One node moved from the application server tier to 

the proxy server tier (Browsing workload) 
Figure 4: Reconfiguration experiment results 

 
Figure 4 shows the experimental results when 

applying the reconfiguration algorithm. The initial 
configuration for Figure 4(a) has four nodes serving the 
proxy tier and another two nodes for the application tier; 
all six nodes are homogeneous. The experiment starts with 
a browsing workload and changes to an ordering workload 
after the 90th iteration (The performance gains between 
90th and 100th iterations are due to different workloads). 
We forced the Active Harmony system do the dynamic 
adjustment checking exactly once right after the 100th 
iteration of the tuning process. Figure 4(a) shows the 
performance improvement when Active Harmony decides 
to move a node from the proxy server tier to the 
application server tier based on the algorithm. This is 
expected since when the system has a workload dominated 
by ordering, it requires more application servers to handle 
the dynamic data from the database. On the other hand, 
most browsing workloads require static data that can be 
served from the proxy servers. Before the adjustment, the 
application servers are highly loaded (CPU utilization is 



always close to 100%) and some proxy servers are idling 
most of the time (CPU utilization is close to 0% and there 
are very few network or disk I/O requests). After the 
adjustment, the average utilization of the application 
servers is lowered while the average loading for the proxy 
servers increases a little. The bottleneck of the whole 
system is relieved and the system performance is 
improved about 62%. 

Figure 4(b) shows the performance improvement 
when given a different configuration at the beginning. 
There are six nodes, two of them serving as the proxy 
servers and four serving as application nodes. However, 
the proxy servers are highly utilized under the browsing 
workload. After the dynamic adjustment checking after 
the 100th iteration, it moved a node from the application 
server tier to the proxy server tier for the adjustment 
automatically. The CPU and disk I/O are highly loaded on 
the proxy servers before the adjustment and some 
application servers are idling most of the time. After the 
adjustment, the average load on all proxy servers is 
lowered, the average utilization on the remaining 
application servers is increased and the system 
performance is improved for about 70%. 

5. Discussion 
 
To tune existing software such as the Squid proxy 

server, we needed to make some minimal modifications to 
add calls to the Active Harmony API. However, some 
variables are only referenced once after the program starts 
execution (i.e., those variables read from the configuration 
script file). Rather than make more extensive changes to 
the program, the Active Harmony system restarts the 
server for each of the tuning iterations automatically. Our 
experiments take all costs of parameter changes (including 
servers need to be restarted and their warm up time) into 
consideration. 

Another issue is the hard coded (compile time) limits 
in the applications. In order to make the system tunable, 
some limits had to be increased. Again, a more significant 
coding effort could have been used to convert these hard-
coded limits into ones that could be changed at runtime. 
For example, to increase the number of files opened 
simultaneously, the value in the /proc/sys/fs/file-max on 
Linux needed to be increased. Otherwise the number of 
files opened simultaneously would be limited. In this case, 
recompilation of the linux kernel would be necessary. 
Besides the kernel, the linux operating system also 
imposes similar constraints in the /etc/security/limits.conf 
and /etc/sysctl.conf .  

Active Harmony helps the cluster-based web service 
adapt itself when facing different workloads. It shows the 
ability to tune a large-scale system automatically. The 
tuning includes the parameter adjustment inside each 
machine and explicit configuration changes for load 
balancing. This performance improvement is difficult to 

achieve by tuning each single machine independently 
since it is extremely difficult to decide the contribution of 
each individual machine to the performance of the whole 
system. Another advantage is that the user does not need 
to have detailed insight knowledge about each component. 
He or she can simple apply the Active Harmony system to 
all the parameters that may be performance related. 

6. Related Work 
 
There are several projects that are trying to develop 

techniques to allow applications to be responsive to their 
available resources or that allow them to be tuned at 
runtime. The Falcon project [8] focuses on computational 
steering. It provides a way for users to alter the behavior 
of an application under execution. The execution results 
are also changed based on the steering mechanism. The 
Active Harmony project also allows user to alter the 
configuration during execution but it is focusing on 
performance tuning rather than the experiment result. 

The Autopilot project [16, 17] allows applications to 
be adapted in an automated way. It uses sensors to extract 
quantitative and qualitative performance data from 
executing applications, and provides the requisite data for 
decision-making. The kernel of the decision process for 
Autopilot is fuzzy logic. Their actuators execute the 
decision by changing parameter values of applications or 
resource management policies of the underlying system. 
The Active Harmony project differs from the Autopilot 
project in that it tries to coordinate the use of resources by 
multiple libraries and applications rather than focusing on 
a single application. 

The AppLes project [5] and the Odyssey project [15] 
focus on resource awareness at the application level.  In 
those systems, applications are informed of resource 
changes and provided with a list of available resource sets. 
Then, each application allocates the resources based upon 
a customized scheduling to maximize its own performance. 
Active Harmony encourages programmers to expose their 
needs in terms of options and their characteristics rather 
than as selecting from specific resources alternatives 
described by the system. 

The ATLAS [21] project has developed automatically 
tuned linear algebra libraries. They develop a 
methodology for the automatic generation of highly 
efficient basic linear algebra routines for a given 
microprocessor. By using a code generator that probes and 
searches the system for an optimal set of parameters, it can 
produce highly optimized matrix multiply for a wide range 
of architectures. The difference between our work and 
ATLAS is that our work focuses on general applications 
that use program libraries rather than that of a specific 
library. 

The Nimrod/O project [4] tries to reduce the search 
space for engineering design. It applies multiple tuning 
algorithms including Simplex, P-BFGS, Divide and 



Conquer, and Simulated Annealing. The design for the 
aerofoil may need to search for the global optima instead 
the local optima. The Active Harmony project focuses on 
the performance issue. Therefore, operating points on 
local optima are still acceptable in most of the cases since 
they are also good enough from the performance point of 
view. 

Another TPC-W benchmark implementation available 
from an academic institute is from the DynaServer project 
[19]. The project studies the design of scalable, high-
performance and highly available e-business servers.  

Others have discussed cluster-based web services with 
different performance metrics. Joel L. Wolf’s work [22] 
proposed a scheme, which attempts to optimally balance 
the load on the servers of a clustered Web farm. They try 
to solve the performance problem by achieving minimal 
average response time for customer requests, and thus 
ultimately achieve maximal customer throughput.  

ADAPTLOAD [18] developed by Riska, A., et al. 
models clustered web server as a front-end dispatcher and 
back-end nodes. They use an online algorithm to decide 
the share of the total workload for each node to achieve 
load balance. They treat back-end nodes as static while 
Active Harmony tries to configure the clustered system 
properly to achieve better performance. 

Chen, et al. [7] use a reconfiguration mechanism to 
improve the throughput of a clustered system. Their focus 
is to avoid letting a small number of running jobs with 
unexpectedly large memory allocation block the execution 
of the majority jobs in the cluster. Active Harmony 
focuses on a general mechanism to improve overall 
system performance by several means. 

 Kalogeraki, et al. [10] migrate objects or jobs from 
hotspots in the cluster to improve the performance. Their 
goal is to achieve load balance while Active Harmony 
focuses on performance improvement. 

Gage [13] focuses on load distribution to provide the 
performance guarantee for cluster-based Internet services. 
This involves support from network level while the Active 
Harmony only tries to tune the system to achieve better 
performance. 

Levy, et al. [12] use a queuing model to analyze a 
cluster-based web service system. Based on the model 
built, they implement a prototype for a performance 
management system that is transparent to the system to be 
tuned. 

The major difference between Active Harmony and 
these works above is that Active Harmony provides a 
general solution that does not require the user to have 
domain specific knowledge. The user does not need to 
analyze the details of the system components or build 
models. 

 

7. Conclusion 
 
The main contribution for this paper is that we apply 

Active Harmony to a coupled system of independent 
applications. We applied Active Harmony to a real-world 
large-scale system and evaluated the result using a 
practical benchmark. The tuning includes the parameters 
adjustment inside each machine and the explicit 
configuration change for load balancing. All this is done 
without the user needing to have domain specific 
information. 

The performance improvement is difficult to achieve 
when tuning individual components of the system 
separately. Since no single universal configuration is good 
for all kinds of workloads, the cluster based web service 
system needs a tuning mechanism like the Active 
Harmony. Active Harmony adjusts the tunable parameters 
based on the observed performance results to improve the 
overall system performance. The experiment results show 
that the Active Harmony system improves the system 
performance from 5% to 16% depending on the workload.  

Scalability becomes a critical issue when tuning large-
scale systems with numerous parameters. We investigated 
two approaches for tuning – parameter replication and 
parameter partitioning. This is helpful to speed up the 
tuning process so the tuning results will not be out of date. 
Parameter duplication helps to speedup the tuning process 
while parameter partitioning makes the tuning process 
smoother with stable performance.  

Dynamically adjusting the components of the cluster, 
the performance is improved by better load balancing. In 
our experiments, the system throughput is improved up to 
70%. All the results demonstrate that Active Harmony can 
bring significant performance improvement to the cluster-
based web service system and permit new ways to adapt 
applications to dynamic environments. 

 
Acknowledgement 

 
This work was supported in part by NSF award EIA-

0080206 and DOE Grant DE-FG02-01ER25510. 



References 
 
1. The Apache Jakarta Project http://jakarta.apache.org/. 
2. MySQL Database Server, MySQL AB 

http://www.mysql.com. 
3. Squid Web Proxy Cache http://www.squid-cache.org/. 
4. Abramson, D., et al. An Automatic Design Optimization 

Tool and its Application to Computational Fluid Dynamics. 
in SC. 2001. Denver. 

5. Berman, F. and R. Wolski. Scheduling from the perspective 
of the application. in Proceedings of 5th IEEE International 
Symposium on High Performance Distributed Computing. 
1996. Syracuse, NY, USA 6-9 Aug. 1996. 

6. Bezenek, T., et al., Java TPC-W Implementation 
Distribution http://www.ece.wisc.edu/~pharm/tpcw.shtml. 

7. Chen, S., L. Xiao, and X. Zhang. Adaptive and Virtual 
Reconfigurations for Effective Dynamic Job Scheduling in 
Cluster Systems. in 22 nd International Conference on 
Distributed Computing Systems (ICDCS'02). 2002. Vienna, 
Austria. 

8. Gu, W., et al. Falcon: On-line Monitoring and Steering of 
Large-Scale Parallel Programs. in Frontiers '95. 1995. 
McLean, VA: IEEE Press. 

9. Hollingsworth, J.K. and P.J. Keleher. Prediction and 
Adaptation in Active Harmony. in The 7th International 
Symposium on High Performance Distributed Computing. 
1998. Chicago. 

10. Kalogeraki, V., P.M. Melliar-Smith, and L.E. Moser. 
Dynamic Migration Algorithms for Distributed Object 
Systems. in The 21st International Conference on 
Distributed Computing Systems. 2001. Mesa, AZ. 

11. Keleher, P.J., J.K. Hollingsworth, and D. Perkovic. 
Exposing Application Alternatives. in ICDCS. 1999. Austin, 
TX. 

12. Levy, R., et al. Performance Management for Cluster Based 
Web Services. in The 8th IFIP/IEEE International 

Symposium on Integrated Network Management (IM2003). 
2003. Colorado Springs, Colorado, USA. 

13. Li, C., et al. Performance Guarantee for Cluster-Based 
Internet Services. in The 23rd IEEE International 
Conference on Distributed Computing Systems (ICDCS 
2003). 2003. Providence, Rhode Island. 

14. Nelder, J.A. and R. Mead, A Simplex Methd for Function 
Minimization. Comput. J., 1965. 7(4): p. 308--313. 

15. Noble, B.D., et al. Agile Application-Aware Adaptation for 
Mobility. in 16th ACM Symposium on Operating Systems 
Principals. 1997. 

16. Ribler, R.L., H. Simitci, and D.A. Reed, The Autopilot 
Performance-Directed Adaptive Control System. Future 
Generation Computer Systems, special issue (Performance 
Data Mining), 2001. 18(1): p. 175-187. 

17. Ribler, R.L., et al. Autopilot: Adaptive Control of 
Distributed Applications. in High Performance Distributed 
Computing. 1998. Chicago, IL. 

18. Riska, A., et al. ADAPTLOAD: Effective Balancing in 
Custered Web Servers Under Transient Load Conditions. in 
22 nd International Conference on Distributed Computing 
Systems (ICDCS'02). 2002. 

19. Snavely, A., et al. A Framework for Application 
Performance Modeling and Prediction. in Supercomputing 
2002. 2002. Baltimore, MD. 

20. Tapus, C., I.-H. Chung, and J.K. Hollingsworth. Active 
Harmony: Towards Automated Performance Tuning. in 
SC'02. 2002. Baltimore, Maryland. 

21. Whaley, R.C. and J.J. Dongarra. Automatically tuned linear 
algebra software (ATLAS). in Supercomputing. 1998. 
Orlando, FL. 

22. Wolf, J. and P.S. Yu, On Balancing the Load in a Clustered 
Web Farm. ACM Transactions on Internet Technology, 
2001. 1(2): p. 231-261. 

 

  
 


	Introduction
	System
	Active Harmony
	TPC-W Benchmark

	Environment

	Tuning
	Impact of Varying Workload
	Cluster Tuning

	Automatic Cluster Reconfiguration
	Discussion
	Related Work
	Conclusion

