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Abstract

Distributed hash tables (DHTs) provide a scalable
mechanism of mapping keys onto values. DHTs are de-
signed for fully decentralized, yet efficient object location
in peer-to-peer systems. The ad-hoc and dynamic nature
of P2P networks motivated existing DHTs to keep only
minimum state per node, resulting in relatively long rout-
ing paths. Moreover, since the storage in existing P2P
systems is essentially “free”, its utilization has not been
the primary focus of DHT design, resulting in systems
with poor utilization.

This paper presents Fixed Prefix Network (FPN), a
prefix-based DHT designed for future commercial P2P
systems supporting applications like distributed archive
repository and distributed DNS. Unlike traditional P2P,
the new breed is built on the assumption that the con-
tributed resources are dedicated to the system, and are sig-
nificantly more stable. Exploiting this characterization,
FPN allows trading of state size for routing length, mak-
ing it possible to maintain short fixed path lengths for a
wide range of number of nodes. Moreover, FPN guaran-
tees the minimum storage utilization, and in practice can
deliver an 80%utilization during the lifetime of a growing
system.Finally, FPN is based on a simple concept, yet de-
livers scalability and robustness similar to other DHTs.

1. Introduction

Distributed hash tables, or DHTs, are designed for
application in P2P systems to locate objects without
the need for a centralized server. Nearly all recent DHT
proposals [13, 9, 4] have a lot in common - they typi-
cally use a small routing table per node, and can locate
any object in a number of steps growing with the size of
the system. The routing tables connect the nodes in an
overlay network, with multiple paths between any two
nodes which ensures not only scalability, but also ro-

bustness in the face of frequent topology changes like
node additions or failures.

While P2P file sharing systems are very successful,
we envision the application of some of the principles be-
hind these systems to the commercial domain, in par-
ticular to the enterprise and service sectors. Features
like scalability, dynamic topology, automatic failure re-
covery, and minimal requirement for human manage-
ment are all very attractive in the business world as
they lead to increased system reliability, increased sys-
tem lifetime and reduced total cost of ownership. Such
systems, which we call ComP2P for commercial P2P,
consist of a large-scale network built of dedicated re-
sources. A primary example of such a system is a dis-
tributed archival repository. Like traditional P2P, these
systems are fully decentralized, and are robust in the
face of failures. However, the resources are not shared
in an ad-hoc and transient way like in traditional P2P,
and cannot be removed from the system on a whim. In-
stead, the sharing is long-term and resources are con-
tributed in a well-defined manner. The management
of these new systems is mostly local, but driven by a
set of global parameters and rules. Local adherence to
these rules guarantees global properties of the system.
An example is that every local administrator must en-
sure that the storage space added locally is at least
equal to the expected size of the data to be inserted lo-
cally divided by the global minimum utilization.

By taking full advantage of stable and dedicated re-
sources ComP2P should be able to offer better perfor-
mance than traditional P2P systems. The small state
per node, which is either constant [6] or grows slowly
with the network size [13, 9], supports a high rate of
change in existing DHTs, but at a cost of relatively long
paths. For example, a recent study [2] investigating the
applicability of a traditional DHT to a reimplementa-
tion of a large distributed service like DNS reached a
negative conclusion mainly because the DHT latency
was order of magnitude higher than that of the cur-
rent DNS.



Additionally, the concept of storage utilization is
not crucial for the traditional P2P systems where con-
tributed resources are essentially ”free”. However, en-
suring the efficient usage of underlying resources is crit-
ical for the commercial viability of ComP2P systems.

This work introduces a new prefix-based DHT de-
signed for ComP2P systems. The network is prefix-
based because each overlay node is assigned a prefix of
the hashkey space. Unlike previously published work
in the DHT area, our approach is focused on exploit-
ing stability and dedication of underlying resources to
provide (1) shorter or even fixed-length routing paths
across a wide range of number of nodes, and (2) good
storage load balance and guaranteed storage utiliza-
tion, while ensuring traditional DHT features like scal-
ability, availability, and robustness.

2. FPN Definition

Fixed Prefix Network (FPN in short) consists of
multiple FPN nodes delivering DHT functionality.

System Model The system consists of multiple physi-
cal nodes (pnodes) communicating through an under-
lying transport network. Pnodes can vary in storage
space, processing power and other resources. Each pn-
ode has a number of storage slots proportional to the
amount of its storage. Each pnode may host multiple
FPN nodes simultaneously up to its number of slots.
There is a global limit on how many keys any FPN
node can keep given by the constant SlotSize.

Zones and Prefixes Hashkeys can be viewed as fixed-
size strings of bits in the space covering all possible
combinations of such strings. A zone is a subspace of
the hashkey space described by a prefix. If the hashkey
space is spanned over S bits, then a given K-bit pre-
fix (K ≤ S)

f1f2 · · · fk

(where fi is a specific bit) describes a zone that keeps
all objects with hashkeys starting with this prefix, i.e.
of the form

f1f2 · · · fkxk+1xk+2 · · ·xS

where x denotes a variable bit.
An FPN node is responsible for the zone represented

by this prefix, which is also this node’s id. We use
”zone” and ”FPN node” interchangeably except clearly
marked cases when a zone not related to any FPN node
is discussed.

Figure 1 illustrates zone prefixes. Two blocks with
keys K1 = 00100101 and K2 = 01011011 would be
stored on zones C and E, respectively. FPN nodes oc-
cupy only leafs of the prefix tree. The shorter the pre-
fix, the bigger the zone represented by this prefix.
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Figure 1. FPN example.

Neighbors Two prefixes F and G are said to be neigh-
bors along bit i iff both the following conditions hold:

fi = ḡi

fj = gj for j 6= i ∧ 1 ≤ j ≤ min(len(F ), len(G))

In other words, the i th bit in F is flipped in G and
all other bits are equal for bit positions occurring in
both prefixes. Two prefixes are neighbors iff a bit posi-
tion exists along which these prefixes are neighbors ac-
cording to the above definition. Two zones are neigh-
bors iff their prefixes are neighbors.

We say an FPN is in a stable state iff any two
FPN nodes have non-overlapping prefixes and the en-
tire hashkey space is covered by zones with assigned
nodes.

Short prefix zones have more neighbors than long
prefix zones. In Figure 1 J has 6 neighbors (C, D, H,
I, M, N), while A has only 4 (B, C, E, H). This imbal-
ance can be limited by splitting the bigger zones first.
When an FPN network is perfectly balanced its topol-
ogy is that of a binary hypercube.

3. FPN Operations

Some FPN operations, like locating overlay network
when a new pnode is added, failure detection with
pings, and failure recovery, can be done in similar fash-
ion to CAN [9]. Below we concentrate on operations
differentiating FPN from other DHTs.

Zone Split The split consists of creating two “children”
zones out of a parent zone with prefixes derived from
the parent prefix by appending 0 and 1 respectively.
The parent’s neighbors are split between the children,
with some neighbors possibly retained by both. This
operation is local: the children zones replace the parent
on the node hosting it. Usually, a zone is split when
its size reaches SlotSize; sometimes split may also be
necessary during node addition.

Zone Transfer A zone is evicted when the storage on a
pnode is exhausted or when there is no free slot for it lo-
cally. A pnode can become a new host for a zone F only



if it has at least one free slot; also, to prevent thrash-
ing, its free space after the transfer must be higher than
the source’s before the transfer.

Search forTransferTarget Among candidates for trans-
fer destination we prefer the one with the highest
amount of free space. However, the “best” candidate
can only be found by checking every pnode in the sys-
tem (i.e. using global knowledge). Since this is impracti-
cal, we have implemented a local scheme in which every
pnode maintains a set of candidates (of limited cardi-
nality), called transfer set containing each candidate’s
IP and an estimation of its free resources – slots and
storage space. This information about a node’s free re-
sources is piggybacked on outgoing messages. In our
experiments we have used, besides pings, write mes-
sages because their number is proportional to the rate
of growth (hence transfer) of the system.

Limiting the size of the transfer set not only bounds
the space consumption at each pnode, but also allows
to discard stale information.

4. Routing

4.1. Basic Routing

Basic routing is done by resolving bits left-to-right,
which results in a number of hops on the order of loga-
rithm of number of zones. For large networks this leads
to big latencies. To reduce number of hops, we intro-
duce the concept of jump tables.

4.2. Dimensions and Jump Tables

Besides regular neighbor tables, each zone keeps so-
called jump tables, one in each dynamically defined di-
mension. Jump tables reduce the number of hops and
improve resiliency.

A dimension consists of a fixed number of bits start-
ing at a given hashkey bit position - for example it can
be defined by a bit position 4 and length 3. A jump ta-
ble for a given dimension has an entry for each possi-
ble combination of bits in that digit (and is indexed by
that combination). Each entry is associated with a pre-
fix, which is the identifier of the local FPN node with
the dimension’s bits replaced by this entry’s index. The
value of the entry is the set of FPN nodes responsible
for entire hashkey space specified by this entry’s pre-
fix. Each such FPN node is described by its zone prefix,
the host network address and the zone version, which
is incremented when the zone is recovered or moved to
a different host. The version is used in the jump ta-
ble construction described below.

Entry Prefix Example Consider a zone with pre-
fix 01101100101 and the 3-bit dimension which is in
bold. The prefix associated with entry defined by in-
dex 5 is defined as 01101110101, i.e. the dimension
bits (in bold) replaced with the binary representa-
tion of 5 (101). For a dimension consisting of 3 bits,
its jump table has 23 = 8 entries, each with a differ-
ent index ranging from 0 to 7.

Jump Table Example Consider again the network
in Figure 1 and the two bit dimension starting at
the first bit. The jump table for zone E (with pre-
fix 010) in this dimension has the nodes responsi-
ble for the following prefixes:

Index Prefix Destination Zones
0 000 0000 and 0001 (nodes A and B)
1 010 010 (this node)
2 100 1000 and 1001 (nodes H and I)
3 110 1100 and 1101 (nodes K and L)

Jump Table Construction Changes to a jump table in
a bit dimension are propagated with pings to neigh-
bors along bits of this dimension. A receiving zone up-
dates its jump tables as part of the state reconciliation
procedure using zone versions to select the latest des-
tination zone location. If B is the number of dimen-
sion bits, full jump tables are constructed in B ping
cycles on all zones involved.

If d is the number of dimensions, each with the same
number of bits, and n is the number of zones, then the
total number of destinations in jump tables of one zone
is O(dn1/d) provided the difference between the longest
and the shortest prefix in the network is limited by a
constant.

4.3. Routing with Jump Tables

Consider a prefix P and a hashkey K. Let K|P be
the prefix of K with the same number of bits as in P .
We define LexDist , the lexicographical order distance
between P and K, to be the bit string given by:

LexDist(P,K) = XOR(P,K|P )

Note that LexDist(P,K) contains all zeros iff pre-
fix P includes hashkey K; at a given moment there is
only one such prefix in a stable FPN network. We say
that a prefix P1 reduces LexDist to a given hashkey
K compared to prefix P2 iff LexDist(P1,K) is before
LexDist(P2,K) in the standard lexicographical order.

Routing with jump tables tries to reduce LexDist
to the destination by attempting complete digit reso-
lution first, and partial digit resolution second. If this
is not possible, the routing is done by resolving one bit



using neighborhood tables. In a network without fail-
ures this algorithm uses the first method only; bit res-
olution is used only for one hop when needed.

If all zones use the same dimension size, the maxi-
mum routing length is limited by the number of dimen-
sions in the longest prefix provided there are no fail-
ures and jump tables are up-to-date.

4.4. Change of Dimension Size

FPN provides a mechanism to increase the dimen-
sion size on-line. It can be used to keep the number of
dimensions (and indirectly the path length) constant.
As nodes are added to the system, a split may cause the
creation of a zone whose prefix is longer than the num-
ber of dimensions times the dimension size (in bits).
When this happens, the dimension size is increased.
The zone re-arranges its jump tables according to the
new digit size (with some entries initially empty), and
communicates the new size to neighbors through pings.
In response, the neighbors make their jump tables big-
ger, and further propagate the change with pings.

Eventually, every node changes its dimension size,
so in this sense it is a global operation. However, this
change is done lazily while the system continues nor-
mal operation. Moreover, each node changes its dimen-
sion size only once in each period when the overall sys-
tem size increases by a factor of 2d where d is the num-
ber of dimensions.

The dynamic change of dimension size contributes
to the efficient use of resources and overall system
longevity. This not only allows FPN to avoid pre-
allocating resources based on some maximum size net-
work, but also allows it to work in case the system hap-
pens to grow over that size.

4.5. Routing Experiments

We have simulated an FPN built of pnodes with a
capacity of 1000 keys each. The system tries to main-
tain routing path length equal to 3, i.e. the number of
digits is 3 with each digit dynamically increased as the
system grows.

We have simulated two scenarios.

• A static network where each node generates reads
only.

• A growing network. with equal number of reads
and writes generated per node. The writes fill
up the nodes causing the system to grow until
it reaches the maximum number of nodes shown.
The results are cumulative up to each number of
nodes.
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Figure 2. Path length in a growing network.

Figure 2 shows path lengths in a growing network
with no failures. In this case the 99% of messages are
delivered in no more than 3 hops.

To investigate the effects of node failures on routing
we failed simultaneously a fraction of nodes from 10%
up to 50% in steps of 10% in a static network without
recovery.

Immediately after the one-time failure of a given
fraction of nodes there is a stabilization period in which
information about failures is propagated with pings.
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in network with failures during stabilization. The

failure rate varies from 0% to 50%.

Figure 3 presents the behavior of a stabilizing net-
work. The fraction of nodes failed has limited impact
on the average path length. For a system of 20, 000
nodes, the average path increased by about 25% (from
2.84 to 3.55) when 50% of nodes failed. The 99th per-



centile path length grows with the percentage of nodes
failed reaching 10 when half of the nodes failed. In case
of a stabilized network (not shown here) the average
path length is similar but slightly shorter (increasing
to 3.48), with the 99th percentile path length reach-
ing 9 after half the nodes failed.

5. Storage Utilization and Load Balanc-

ing

A system using a given load balancing scheme
reaches system full state when insertion of the next
hashkey cannot be performed due to the lack of space.
We say that the guaranteed utilization is U if a sys-
tem cannot be full if its utilization is below U . Note
that the guaranteed utilization differs from the utiliza-
tion at a given time; the latter can be lower than the
former if too few keys were inserted.

We propose two techniques, lazy splitting and over-
subscription. Used together, they can guarantee a uti-
lization on the order of 80%. This guarantee not only
holds for the system’s entire lifetime (as it grows), but
is also achievable with only a modest increase in band-
width consumption.

Base scheme A simple way to add a new pnode is to
pick a random key, determine the zone responsible for
it, split this zone into two new zones, and transfer one
of them to the new pnode. This scheme suffers from
one big problem: randomly choosing the zone to split
results in big inequalities in zones’ areas (factors of
log(n) are possible, where n is the number of nodes in
the system). Thus, when we reach system full state,
some nodes will be only 1/log(n) full, leading to poor
overall utilization.

Aggregation An improvement to the base scheme
groups randomly selected zones into sets (of some
fixed cardinality N), with pnodes hosting entire sets
of zones (as opposed to only one zone). For exam-
ple, a pnode with a 1TB capacity can host up to five
zones that can grow to 200GB each, giving a value
of N = 5. In this approach, a pnode has a num-
ber of slots of capacity given by the system-wide con-
stant SlotSize. A zone growing beyond this limit must
be split.

Because the likelihood that many of the bigger zones
are grouped together is small, the ratio of the biggest
set load to that of the smallest set load is significantly
smaller than the ratio for individual zones.

Slots are similar to the virtual nodes used in load
balancing in a number of systems [13, 9], but the vir-
tual nodes do not have a capacity limit themselves, the
only limit being that of the pnode. In [13] each pnode
hosts a number of virtual nodes approximately equal to

the logarithm of the number of nodes. Using this tech-
nique, the utilization is between 50% and 60% for a
10000 node system.

5.1. Lazy Splitting

This technique splits a zone only when it becomes
full. For a given number of keys, it results in the min-
imum number of zones possible. Nodes added to the
system before a split is needed constitute a free slot re-
serve, from which slots are used when zones are split.

Lazy splitting alone can bring the guaranteed sys-
tem utilization to 50%, since it is easy to see that when
the system becomes full the free slot reserve must be
empty and each node is at least 50% full. Unfortu-
nately, this is also a tight bound (a system can have
all nodes but one half-full, and one node full).

To maintain the free slot reserve, FPN arranges that
every node in the system hosts at least one FPN zone.
When a new pnode is added, a zone from a “donor”
pnode hosting two (or more) zones is transferred there;
from such pnodes, the one with the highest number of
zones is preferred in order to limit the imbalance. The
search for a donor is not global; only up to a fixed num-
ber of pnodes are contacted.

If the system is lightly loaded, it is possible that no
pnodes with two zones can be found, in which case we
allow an eager split of the biggest zone found. It can
be shown that the bound on the guaranteed utiliza-
tion introduced in the next section does not change if
each pnode can have at most one eagerly split zone;
having two eagerly split zones is clearly not necessary
since the same zone can be eagerly split many times
(each time one of new zones is transferred to a new pn-
ode). Once an eagerly split zone becomes full, it reverts
to being a ’normal’ zone.

5.2. Oversubscription

To achieve utilization higher that 50%, each pnode
can hold more slots than would actually fit given its ca-
pacity (i.e. pretend to have more space than it’s actu-
ally available). The key observation is that, if the zones
residing on a node are lightly loaded (as most of them
are when the utilization is low), there is enough stor-
age on the node to host extra zones. Consequently, we
modify the aggregation technique so that a node has
2 × N − 1 slots, where N = C/SlotSize, and C is the
node’s capacity. When the pnode becomes full before
any of its zones is full we perform a transfer as de-
scribed in Section 3.

It can be shown that the lazy splitting with the over-
subscription can guarantee utilization (N − 1)/N .



For N = 5 this results in a guaranteed utiliza-
tion of 80%. This scheme can be easily applied to
heterogeneous networks by assigning to each pn-
ode a number of slots equal to (2 × Nnode − 1) where
Nnode = bCnode/SlotSizec. The guaranteed utiliza-
tion for such system is given by (N − 1)/N , where N
denotes the average (over the entire network) num-
ber of slots per node.

Since the guaranteed utilization is independent of
the system size, a credit-debit system can be run lo-
cally: after a given amount of storage is contributed
locally, new data can be inserted there up to the size
equal to the guaranteed utilization times the size of the
contributed storage. This not only allows local admin-
istration of the system, but also reduces the bandwidth
requirements compared to adding nodes only when sys-
tem is full.

5.3. Utilization Experiments

In these experiments we subjected the system to
hashkey insertion (write) and measured the utilization
and the transfer rate obtained by various load balanc-
ing techniques. The transfer rate is defined as the ra-
tio of the number of key transfers to the number of keys
stored in the system. The transfer number includes all
hashkey moves due to either insertion (write) or zone
move since the start of the system.

While the order in which nodes or keys were added
does not influence the utilization, it has a big impact on
transfer rate. At one extreme, all the nodes are added
to the system before any key is inserted. Since splits
and transfers executed eagerly by empty zones do not
move any data, the only data transfer is caused by (sub-
sequent) write operations, thus providing the best-case
scenario. Each writes generates one transfer; thus, the
lowest possible transfer rate is 100%. The other ex-
treme is when pnodes are added only when the sys-
tem becomes full. This forces transfer zones from pn-
odes that filled up to pnodes with enough free space.

Benefits of Oversubscription Figure 4 shows the uti-
lization and worst-case transfer rate with and without
oversubscription as a function of the number of nodes
in a system when N = 4 for each node. In such case,
the theoretically proved guaranteed utilization for over-
subscription is 75%, and the measured utilization min-
imum is 85%.

Disadvantages ofOversubscription Increasing the num-
ber of zones per node leads to a larger fraction of node’s
storage dedicated to various structures (such as neigh-
borhood and jump tables) needed for each zone. This
problem is shared by the simple aggregation scheme.
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Figure 4. Utilization and transfer rate for N = 4

Figure 4 shows another cost - extra traffic caused
by evicting zones when nodes become full. Compared
to the base case without oversubscription, the average
transfer rate increases by about 12% from 1.75 to 1.95.
The next section describes oversubscriptionwith thresh-
old, a technique providing the same guaranteed uti-
lization with lower bandwidth requirements. Note that
oversubscription does not have a “bandwidth penalty”
for read operations; thus, in a system with 80% reads
and 20% writes, the increase in bandwidth consump-
tion is about 2.4%.
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Figure 5. Transfer for N = 4 at various utilization

thresholds.

Oversubscription with Threshold The bandwidth
penalty can be reduced by adding pnodes when some
target utilization is reached. Figure 5 shows the trans-
fer rate for N = 4 and various utilization targets. The
graph shows only the transfer rate since the guar-
anteed utilization coincides with the threshold ex-
cept in the “no threshold” case which has a minimum
of 85% (see Figure 4).



 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=4

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=5

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=10
 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=4

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=5

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

T
ra

ns
fe

r 
(%

)

Nodes

N=10

Figure 6. Transfer for various N when utilization

is limited to 80%.
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Figure 7. Impact of search for a transfer target,

N = 4, 80% utilization threshold.

Impact of Number of Slots Figure 6 shows the transfer
rate when we vary the number of slots for the same
guaranteed utilization (80%). The results show that
higher N generate lower traffic for the same utiliza-
tion.

The experiments suggest that we should first de-
cide the desired guaranteed system utilization and then
derive the minimum value of N from the formula
U = (N − 1)/N . At the cost of more state per node, N
can be further increased to reduce bandwidth require-
ments.

Impact of Non-global Search for Transfer Figure 7 com-
pares a theoretical system in which the transfer target
is located with the perfect global knowledge against an
actual system with the transfer set limited to 100 el-
ements on each pnode. Compared to the global case,
the local scheme has a somewhat higher (6%) transfer
rate, and occasionally lower utilization, showing that

local search produces acceptable results.

Impact of Node Capacity Figure 8 shows the impact of
node capacity on the transfer rate. Using N = 5 and
an 80% threshold, we have varied the capacity of the
nodes up to 1 million keys per pnode. With growing
node size, the transfer rate increases slightly; this ef-
fect is negligible when pnode capacity increases from
32,000 to 1,000,000 keys.
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Figure 8. Impact of node capacity, N = 5 at 80%

utilization.

6. Related Work

6.1. Network Construction and Routing

FPN is the first DHT that can effectively main-
tain fixed routing lengths while the system grows. Ke-
lips [3] routes messages in a fixed number of steps, but
only for a static system size. In Kelips nodes are di-
vided into k affinity groups, and when k is O(

√
n) the

path length is O(1). As a result, Kelips can deliver
fixed path length for each target system size, but un-
like FPN, it cannot maintain fixed path lengths while
the system grows. Moreover, the design is not intended
for large size, since its memory consumption is O(

√
n)

with an extremely large constant (approximately equal
to the number of files stored on one node). This is be-
cause each node in an affinity group keeps pointers to
all files stored on all other nodes in the group.

FPN is related to Internet address classification
CIDR [10] in dividing a space spanned over bit vector
into disjoint subspaces represented by variable-length
prefixes.

Plaxton et. al [8] proposed an object location al-
gorithm based on prefix routing. This scheme does
not handle node failures, additions and deletions. Pas-
try [11] and Tapestry [4, 15] extend Plaxton proposal



by addressing these shortcomings. FPN bears resem-
blance to these systems as the key is divided in digits
and the routing is done in general by resolving the next
digit. However, in Tapestry and Pastry neighbors are
defined for all values of a given digit provided they ex-
ist, whereas FPN maintains fewer neighbors since they
are defined by bit position, not multiple digit values.
As a result, neighborhood information is easier to col-
lect and keep up-to-date in FPN. Routing tables for
Tapestry and Pastry are similar to FPN’s jump tables.
However, jump tables are useful but not required for
routing, whereas the routing tables in these two DHTs
are necessary. Last but not least, digit size in the FPN
is variable which allows for maintaining fixed number
of hops as the network grows in size. In both Tapestry
and Pastry routing path length grows logarithmically
with the number of nodes.

In CAN [9] nodes are assigned zones in a
d-dimensional torus where the number of dimen-
sions d is constant for the entire system. The rout-
ing takes O(dn1/d) steps and each node keeps O(d)
links. FPN has symmetrical complexities in rela-
tion to CAN - an FPN network with jump ta-
bles has O(dn1/d) links and the routing takes d
steps where d is the number of digits. eCAN [14] ex-
tends CAN to achieve O(log n) routing independent
of d.

Chord [13] and Kademlia [7] are DHTs in which
routing takes O(log n) steps and each node maintains
O(log n) links.

Finally there are DHTs with constant num-
ber of links, and routing messages in O(log n) steps.
Viceroy [6] topology combines approximate butter-
fly network and rings of predecessor and successor
links. The routing takes O(log n) steps with the num-
ber of links equal to a small constant (7 in this
case). Koorde [5] is a variant of Chord maintain-
ing only two neighbors per node and routing in
O(log n) steps.

6.2. Load Balancing

A basic load balancing technique in P2P is to keep
multiple zones (virtual nodes) per one pnode. Chord
proposes to keep O(log n) zones per node. This scheme
ensures that with high probability the number of ob-
jects per node is within constant factor from optimal.
However, this still can lead to poor minimum utiliza-
tion. Rao et. al [8] propose several load balancing algo-
rithms for P2P systems in which highly loaded pnodes
transfer keys to lightly loaded ones until load balances.
They can achieve high utilization, more than 90% with
less than 50% data transferred. Unfortunately, they

considered static network only, so it is not clear how
often one will have to balance the load while the sys-
tem grows. As a consequence, the total cost of contin-
uous load balancing in terms of bandwidth consump-
tion cannot be inferred. Moreover, they do not investi-
gate the utilization during lifetime of the system.

PAST [12] is a file storage on top of Pastry. The
achieved utilization rates are quite good, in excess of
90%, however at the price of some file insertion fail-
ures. The results reported there are not directly com-
parable to this work for several reasons: the experi-
ment in the PAST case has been measured for a fixed
configuration of 2250 nodes without looking at utiliza-
tion while the system size grows; the entities stored are
variable-size files versus fixed-size keys used for FPN
experiments; and in FPN case no insertion failure is
tolerated.

Another load balancing scheme is presented in [1],
in which an object is mapped to a small constant num-
ber of peers rather than to a single peer, by using dif-
ferent hash functions. The insertion is done on the peer
with the lowest utilization, and redirection pointers to
it are inserted on all the others. Because the redirec-
tion pointers need update when the network changes,
the scheme assumes that keys are re-published period-
ically.

7. Conclusions and Future Work

We introduced a new DHT called Fixed Prefix Net-
work (FPN) designed specifically for future commercial
applications built with the P2P paradigm. Exploiting
the assumption that the resources used in this network
are dedicated, we build FPN nodes with rich connectiv-
ity, resulting in fixed path lengths for extremely large
range of network sizes. The short routing path is main-
tained even in the face of large fraction of failed nodes.

We introduced also a new storage load balancing
scheme called oversubscription used to ensure high
guaranteed storage utilization on the order of 80% for
entire system lifetime by following simple rules locally
about when new storage should be added This scheme
has only a small extra cost in bandwidth consumption.

Unlike most of the related work, we have evaluated
our system throughout the entire system lifetime in-
stead of focusing on one specific system size. Our de-
sign is able to maintain fixed routing paths and deliver
guaranteed utilization while the system grows.

Short routing paths are critical for user acceptance
in commercial world where a good level of performance
is expected. Ensuring high guaranteed storage utiliza-
tion while limiting bandwidth consumption is abso-
lutely necessary for commercial viability of the result-



ing systems if those resources are not free, as is the case
for intended applications.

In the future we plan to extend the FPN to handle
real world problems like network partitions and use the
extended design as a platform for a prototype of one of
possible commercial applications.
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