
Distributed Hybrid Earthquake Engineering Experiments:
 Experiences with a Ground-Shaking Grid Application

Laura Pearlman1, Carl Kesselman1, Sridhar Gullapalli1, B.F. Spencer, Jr.2, Joe Futrelle3,
Kathleen Ricker3, Ian Foster4,5, Paul Hubbard5, Charles Severance6

1USC Information Sciences Institute, University of Southern California, Los Angeles, CA
2Department of Civil and Environmental Engineering, UIUC, Champaign, IL

3National Center for Supercomputing Applications, UIUC, Champaign, IL
4Argonne National Laboratory, Argonne, IL 5University of Chicago, Chicago, IL

6University of Michigan, Ann Arbor, MI
laura@isi.edu

Abstract
Earthquake engineers have traditionally

investigated the behavior of structures with either
computational simulations or physical experiments.
Recently, a new hybrid approach has been proposed
that allows tests to be decomposed into independent
substructures that can be located at different test
facilities, tested separately, and integrated via a
computational simulation. We describe a Grid-based
architecture for performing such novel distributed
hybrid computational/physical experiments. We
discuss the requirements that underlie this extremely
challenging application of Grid technologies,
describe our architecture and implementation, and
discuss our experiences with the application of this
architecture within an unprecedented earthquake
engineering test that coupled large-scale physical
experiments in Illinois and Colorado with a
computational simulation. Our results point to the
remarkable impacts that Grid technologies can have
on the practice of engineering, and also contribute to
our understanding of how to build and deploy
effective Grid applications.

1. Introduction

Until recently, earthquake engineers studied the
effects of ground motion on structures in one of two
ways: by running a computational simulation or
performing a physical experiment. (In the latter case,
a physical model is constructed and instrumented,
forces are applied to it, and results are measured and

logged.) In contrast, tightly-coupled hybrid
experiments combine the two approaches [14, 19]:
one part of a structure is modeled computationally
and another part as a physical experiment, and the
computation and the physical experiment’s control
system communicate and influence each other’s
behavior over the course of the experiment.

Hybrid experiments are relatively
straightforward to perform when they involve a
single physical experiment, as the computational
simulation and physical apparatus can be co-located.
However, for some earthquake engineering problems,
it would be desirable to construct a hybrid
experiment that involves more than one physical
experiment—for example, an experiment involving a
large geotechnical centrifuge to model soil motion
and a large shake table to model the motion of a
structure above ground. Physical experiments (and
the physical components of hybrid experiments) are
often performed at a large scale—specimens
weighing 50 tons are not uncommon—and require
specialized facilities. Thus, such multi-component
hybrid experiments will typically require coupling
over multiple geographically distributed sites.

A large-scale distributed hybrid experiment is
fundamentally about sharing heterogeneous
resources (simulation, experimental apparatus), each
owned and controlled by a different institution, and
integrating them so as to enable a collaborative
experiment to take place. Thus, a distributed hybrid
experiment maps well into the concept of a virtual
organization [8] and would appear ideally suited to
the application of Grid technology. Recognizing this,
we have created a Grid-based framework for

conducting distributed hybrid experiments. Building
on mechanisms provided by the Globus Toolkit’s
implementation of the Open Grid Services
Infrastructure (OGSI) specification [6], we have
created domain-specific Grid services, platform-
specific interfaces, and user interface tools that make
it possible to construct, perform and monitor
distributed hybrid earthquake engineering
experiments conducted across geographically and
organizationally distributed sites with heterogeneous
equipment and policy. This framework is called
NEESgrid [11, 12, 18] and is being deployed and
used as part of the NSF-funded Network for
Earthquake Engineering Simulation (NEES).

In this paper, we describe this framework and
explain how it both enables secure, reliable
distributed hybrid experiments and provides a secure,
consistent, uniform collaborative environment for
remote participation in such experiments. We
describe our integration of teleobservation and
teleoperation capabilities, data and metadata services,
and Grid protocols and technologies: specifically, the
Globus Toolkit version 3 implementation of OGSI
and associated security protocols [20]. We also
describe the application of our framework within the
recent Multi-site Online Simulation Test (MOST) [2],
an unprecedented experiment that linked physical
facilities at two sites (Colorado and Illinois) and a
computational simulation.

Our focus in this paper is on the architecture and
engineering of the NEESgrid software system and
our experiences with its application to challenging
earthquake engineering problems. We provide this
report with the goal of communicating to the larger
community the requirements that arise in this field,
the techniques that we have found useful in
addressing these requirements, and the lessons that
we have learned in practical settings.

2. Experiment Architecture

The complete NEESgrid system comprises a
variety of different resource types, including
experiment facilities, data repositories, and
computers used for simulations. In order to capture
these different functions while also exploiting
commonality when it is present, we have designed
the NEESgrid software as a service-oriented
architecture. The various functionalities required to
implement a complete distributed experiment are
expressed as service interfaces, and a particular
resource is defined by the service interfaces that it

supports. We describe in this section a subset of those
interfaces that are particularly relevant to distributed
hybrid experiments, namely those concerned with
controlling remote experimental equipment,
monitoring the progress of an experiment, acquiring
experimental data from local site-specific data
acquisition equipment, and making that data available
to remote experimenters. Our implementations of the
resulting services make good use of OGSI
mechanisms, such as soft state management and
service data elements. In addition, communications
within the NEESgrid system are securely
authenticated and authorized via the use of Grid
Security Infrastructure (GSI) mechanisms [5, 7, 20].
NEESgrid also makes use of components from the
NSF Middleware Initiative (NMI) software release.

2.1. Control Components

A crucial observation underlying the NEESgrid
software architecture is that, from the perspective of a
hybrid experiment, a physical experiment and a
computational simulation are indistinguishable. Thus,
we define a single Grid service interface, the
NEESgrid Teleoperations Control Protocol (NTCP)
[15], that can be used to interact with either. NTCP
provides for remote access to control systems (e.g.,
servo-hydraulic systems) and simulated control
systems (e.g., computational simulations that model
the actions of servo-hydraulic systems on experiment
specimens). This strategy of making both numerical
and physical simulations accessible through the same
service interface has many advantages. For example,
it allows us to first test hybrid experiments with
purely simulation components and then seamlessly
replace the simulation components with physical
simulations. This flexibility has proven invaluable in
MOST, described in Section 3.

The design goals for NTCP were driven by
characteristics of physical earthquake engineering
experiments. The simulation tools used to design an
experiment and implement computational
components will vary from experimenter to
experimenter and may range from high-level
workbenches such as MATLAB to simulations
written in C or Fortran. Furthermore, the control
systems used to drive the physical experiments (e.g.,
by positioning hydraulic actuators) vary from facility
to facility. Facility managers want to retain some
control over what commands are acceptable (e.g., to
set limits on the amount of force that can be applied
on the local specimen, and to be able to terminate the

local experiment at any time). Finally, it may be
impossible to “undo” an action in a physical
experiment without tearing down the specimen and
rebuilding it, an expensive and time-consuming
process. Thus, we concluded that NTCP must:
• provide a uniform control interface, separating

the definition of these control interfaces from
details of specific control systems or simulation,

• control both physical experiments and
computational simulations, enabling
experimenters to switch easily between the use
of physical experiments and computational
simulations;

• support fault-tolerance, so that transient
problems (such as network interruptions) during
a distributed hybrid experiment need not cause
the experiment to terminate; and

• allow for the negotiation of request parameters
prior to execution, so that a client may discover
in advance whether a request would violate a
site’s local policy or cause physical damage.
These requirements led to the design of a

transaction-based [9] protocol. NTCP is designed and
implemented as an OGSI compliant Grid Service,
and as such can leverage Grid security models,
lifetime management, and state observation. As
shown in Figure 1, an NTCP operation is initiated by
a client sending a proposal (a set of requested
actions) to an NTCP server. If a proposal is accepted,
the client can complete the transaction by issuing an
execute command to cause the proposed action to
occur. This separation of proposal and execution
enables a client to ensure that the actions for a testing
step are acceptable at all experimental sites before
causing any action to take place. If any of the
requested proposals is rejected, the client may send a
request to cancel the transaction. When the execution
completes, the client receives the transaction results,
which can be used to determine the desired set of
actions for the next time-step. The NTCP protocol
supports at-most-once semantics, so that if a client
makes a request and does not receive a reply, the
client can re-send the request without any danger of
the same action being executed twice.

Figure 1: State transitions in NTCP

Each transaction in the NTCP server is

represented by an OGSI service data element [6] that
includes the transaction name and state, the requested
actions and timeout values specified in the proposal
that resulted in the creation of the transaction, the
transaction results (if available), and timestamps
representing each state change in the lifetime of the
transaction. Thus, OGSI inspection mechanisms can
be used to query the state of any transaction. In
addition, a service data element representing the
“most recently changed” transaction can be used to
monitor the behavior of the server as a whole.

Figure 2: NTCP server and control plugin

To facilitate the use of NTCP across different
control and simulation environments, we structured
the implementation as shown in Figure 2, with a core
NTCP server implementing the generic parts of the
NTCP service, such as managing the transaction
state, and a control plugin interface [16]. The
implementation of the plugin is responsible for
mapping NTCP requested into appropriate actions in
the local site’s control system or simulation engine.

2.2. Remote Monitoring Components

For a multi-site experiment, remote observers
need the ability to see what is happening and observe
data. NEESgrid includes a telepresence system [4],
which uses commodity hardware and software to
provide a video feed and basic camera control
(pan/tilt/zoom) to remote observers, providing a
general sense of lab activity, and two mechanisms for
accessing experimental data. The NEESGrid
Streaming Data Service (NSDS) [13] provides a best-
effort stream of real-time data from the data
acquisition (DAQ) system. In addition, the complete
data set can be accessed following completion of
each time step via the NEESGrid data and metadata
repository, as we describe in the next subsection.

2.3. NEESgrid Data and Metadata Repository

Earthquake engineering experiments often
produce more data than can be streamed reliably in
real-time. In addition, data may be of interest after an
experiment has completed. Thus, NEESgrid includes
a data and metadata repository for storing and
providing access to experiment data. This repository
and associated NEESgrid services allow data and
metadata from an experiment to be archived
incrementally by an ingestion tool as an experiment
is run; researchers can later download this data for
analysis or visualization.

The NEESgrid data and metadata repository uses
GSI for authentication and GridFTP for file transport.
Metadata objects are managed using the NEESgrid
Metadata Service (NMDS), and files are managed
using the NEESgrid File Management Service
(NFMS). These components are coupled using the
Façade pattern, but may be used independently.

NMDS is used to create, update, manage, and
validate metadata and metadata schemas; it differs
from most other metadata management systems in
that metadata schemas are represented by first-class
objects and can be managed just like any other
object. In addition, it supports per-object version
control and authorization. We plan to add support for
the Community Authorization Service [17].

NFMS provides two main capabilities: logical
file naming and transport neutrality. Applications
negotiate file transfers with NFMS, which resolves a
transfer request for a logical file to a protocol request
for a physical resource. NFMS uses GridFTP to
provide transport and has a plug-in API that allows
other transport protocols to be used if desired.

Figure 3: NEESgrid Repository Architecture

We have also developed an ingestion tool to
upload data and metadata to the repository as an
experiment is run and a servlet that acts as a bridge
between GridFTP and https.

3. Case Study: The MOST Experiment

The Multi-Site Online Simulation Test (MOST)
distributed hybrid experiment took place on July 30,
2003 [2]. This large-scale experiment linked physical
experiments in the Newmark Civil Engineering
Laboratory at the University of Illinois at Urbana-
Champaign (UIUC) and at the Structures and
Materials Testing Laboratory at the University of
Colorado, Boulder (CU) with a numerical simulation
at the National Center for Supercomputing
Applications (NCSA), also in Urbana-Champaign.

Figure 4: MOST Experiment Structure

The structure used in the experiment (Figure 4)
represents a two-bay single-story steel frame, like
that of the interior of a multistory building. To
distribute the test structure we applied a method
called Multi-Site Pseudo-Dynamic Substructure (MS-
PSDS) testing [19] in which the structure to be tested
is divided into various substructures, each of which is
physically tested or numerically simulated at the
same time at a different location. A simulation
coordinator controls the overall experiment and
communicates with the test sites and simulation
computers. This technique allows for testing a wide
range of large structures that might otherwise be
beyond the capabilities of many laboratories.

Figure 5: Modular framework of MOST

Figure 5 illustrates how NEESgrid services are
used to implement the MS-PSDS methodology.
Specifically, NTCP was used to integrate each test
structure. A Simulation Coordinator provides overall
management of the experiment. This component
repeatedly issues a set of NTCP proposals based on
current simulation state, collects information about
the resulting state of all the substructures, and, based
on that resulting state, computes the next set of
NTCP commands to send. The coordinator also
handles exceptions such as lost network connections
or invalid responses. To help manage complexity,
MOST was developed incrementally. First, we

implemented and tested a distributed simulation-only
experiment. Once the correctness of the distributed
simulation was verified, two of the numerical
simulations were replaced with physical
substructures. The use of NTCP made this
substitution transparent to the coordinator.

The physical experiments are shown in Figure 6
and Figure 7. The left column of the experimental
frame was tested at UIUC and the right column at
CU. The column is a cantilever column because of
the beam-column pin connection that connected the
right hand column to the frame to the simulated
horizontal beam. Like the UIUC column, the CU
column was tested in a horizontal position; however,
it was rigidly connected to a vertical supporting steel
structure suppressing all translational and rotational
degrees of freedom. The central section of the frame
was modeled by a simulation performed at NCSA on
a Pentium 2.4 GHz Windows machine with 512 MB
of memory. (This simulation was performed at
NCSA primarily to exercise the deployment at NCSA
and to further distribute the experiment.)

Figure 6: The physical substructure test at the

University of Illinois

For each time step simulated in MOST, force
data was fed to the computational model at NCSA;
the correct displacements were calculated and sent to
the Illinois and Colorado physical test sites;
displacements were applied to the physical models;
and forces for the next iteration were measured and
sent back to the computational model at NCSA. This

cycle was repeated 1,500 times during the five hour
experiment.

Figure 7: The physical substructure test at the

University of Colorado

During the experiment, the structural response
was streamed to remote users and simultaneously
stored in the main data repository for archiving. To
observe the test and collaborate with others, users
remotely accessed tools via logging in to MOST via a
NEESgrid specific collaboration interface built using
the CHEF collaboration framework [1]. The CHEF
interface used the various NEESgrid protocols to
authenticate to NEESgrid resources, access the
metadata catalog and download experimental data so
that it could be viewed immediately by remote
participants. CHEF also provided a range of useful
collaboration tools such as a message board, access to
an electronic notebook and an interactive chat.

Figure 8: CHEF data viewers

Figure 8 shows some of the data viewers
available via the CHEF interface These viewers
provided near real-time visualization of Figure the
structure response, time services data from a sensor,
as well as hysteresis plots. Arrangements of one or
more views can be saved or viewed, and the Data

Viewer automatically organizes a given arrangement
to allow users to see each of the views. At the top of
the Data Viewer, a set of VCR buttons allows users
to play, pause, rewind, and fast-forward the data
viewer, while at the bottom a clickable timeline
allows users to see the state of the Data Viewer at any
given time point.

During MOST, real-time video from both of
physical testing sites was also available, with at least
one accessible camera at each site. To access the
camera at either Colorado or UIUC, users could click
on the appropriate Video button.

3.1. MOST Software Configuration

Details of the configuration of the NTCP control
structure used in MOST are shown in Figure 9. The
simulation coordinator, on the left, was written by an
earthquake engineer using a Matlab toolbox that we
developed to provide a convenient interface to
NTCP; this toolbox in turn called the NTCP Java API
to send requests to the remote NTCP servers.

Figure 9: Control components used in MOST

At each time-step, the simulation coordinator
sends requests to the NTCP servers at UIUC, NCSA,
and CU. Each NTCP server does some generic
processing (e.g., state management) and then calls a

plugin to perform actions.
At UIUC, the NTCP server was configured to

use a plugin that communicated, via a simple TCP/IP
protocol, with a Shore-Western control system,
which in turn controlled the UIUC servo-hydraulics.

At NCSA, the NTCP server was configured to
use a plugin (called the “Mplugin”) that
communicated with the Matlab simulation. In this
case, instead of pushing requests out to the back-end
as they were received, the plugin buffered requests
and implemented a separate service to provide
information about them. The Matlab simulation
running at NCSA would then poll that service for
requests; when the simulation received a request, it
would perform an appropriate computation then call
the plugin-implemented service to notify the NTCP
server of the results.

The CU NTCP server was configured to use the
same plugin code used by NCSA; however, instead
of processing requests by performing computations,
the CU Matlab application used Matlab’s xPC feature
to communicate with a target machine running
Matlab’s real-time operating system, which would in
turn control the servo-hydraulics at CU.

3.2. Remote Monitoring Components in
MOST

Figure 10: Major DAQ components

Sensor data from the two physical experiments
were collected by a local data acquisition (DAQ)
system. Conveniently, both sites choose LabVIEW as

the software for their data acquisition. Thus, to
interface the DAQ to NEESgrid, a simple LabVIEW
interface was built that ran at the UIUC and Colorado
sites and periodically gathered data deposited by the
DAQ in a network-mounted file system; NFMS and
GridFTP were then used to upload it securely to a
NEESgrid accessible data repository. Once there, the
combined data could be visualized using the CHEF-
based data viewer. The same strategy was used to
capture data generated by the simulation at NCSA.

3.3. Metadata in MOST

For MOST, metadata was mostly generated
manually and data was generated automatically from
sensors. Experimenters developed metadata that
described each of the three components of the
experiment in terms of the structural configuration,
material properties, and instrumentation, and
uploaded the metadata to the repository prior to the
experiment. The metadata was designed so that non-
participants viewing the stored data can understand
the meaning of the sensor data in the context of the
experiment..

An early version of the NEESgrid data and
metadata repository was used for MOST. The
experiment served to exercise the data functionality
and helped identify areas to be more fully developed
in later releases, such CAS-based access control.

3.4. MOST Results

The results from MOST can be divided into two
categories: the hybrid simulation experiment, and
user interaction and participation.

The full, 1500-timestep distributed experiment
was actually run twice: once as a “dry run” of the
components directly involved in the simulation (the
NTCP servers, physical experiments, and
simulations), and then as the full experiment,
available for viewing by remote participants. The dry
run took about 5.5 hours and ran successfully to
completion. The public experiment ran for more than
5 hours but exited prematurely at step 1493 (out of
1500). The fault tolerance features of NTCP enabled
the simulation to detect and recover from several
transient network failures throughout the day;
however, the simulation coordinator had not been
coded to take advantage of all the fault-tolerance
features, and a final network error caused the
simulation to terminate prematurely.

During the execution of the experiment, over 130

remote participants logged on to observe MOST.
CHEF’s chat feature was crucial to user interaction. It
allowed developers to communicate with one
another, while keeping other participants informed of
status and progress. The sense of participation of the
remote users was enhanced by the three telepresence
cameras, which could be operated remotely.

3.5. Mini-MOST

Once MOST was complete, there was a desire
for a less-expensive, self-contained version that could
be installed into an average lab. Mini-MOST (Figure
11) is a tabletop-sized system, with a single (1m by
10cm) beam, using stepper motors. It is an emulation
of the UIUC portion of MOST and provides an
excellent platform for education, training, and
outreach for NEESgrid.

Figure 11: Mini-MOST

The control and DAQ are run from a single
Windows-based PC, which can also host the
MATLAB simulation coordinator if required.
Sensors are also scaled back to a strain gauge, LVDT
for position, and a load cell for force. In the first
version, a single 24lb through-hole stepper motor was
used. Work is currently underway to add the second
stepper motor and a rotation sensor to more
accurately model the full scale MOST experiment.

Other than scale differences, the main software
change was a new NTCP plugin to communicate with
LabVIEW. The second substantial change is in the
simulation coordinator: the smaller beam has
different mass, spring constant, inertia and so forth.
We made small changes to the MATLAB code to
accommodate these differences.

For simulation and debugging, we have test code
corresponding to the MOST variations. We also have
a program where the beam is replaced by a first-order
kinetic simulator. It is also applicable for testing
when the actual hardware is not available.

The control code is developed in LabVIEW, with
a daemon program for NTCP communications.

4. Security Considerations

Telecontrol incurs serious health and safety risks,
as well as the risk of damaging expensive equipment
[10]. We provide several mechanisms to help
alleviate these risks: the usual Grid-based
authentication and access control [5, 7], and the
ability in NTCP for sites, through the control plugin
mechanism, to enforce limits on what actions are
allowed. We have also designed our services in such
a way that the actual control systems do not need
direct access to the external Internet.

However, because our NTCP implementation
was not designed as provably secure software, and
because NTCP and related components run on
commodity operating systems (Linux and Windows),
it is the responsibility of the experiment sites to
employ appropriate operational procedures. In the
case of MOST, these procedures included powering
up the servo-hydraulics only when no one is near the
experiment specimen, running a plugin/backend
system that required a human to approve each action
(used only during initial testing at UIUC), and,
whenever the servo-hydraulics are powered up,
always having engineers nearby monitoring the
experiment and prepared to turn it off if necessary.
The small-scale nature of Mini-MOST makes the
associated health and safety risks far smaller; the
primary precaution taken was the creation of a plexi-
glass cover for the Mini-MOST apparatus.

5. Ongoing Work

The software used in MOST was released in
October 2003, and several new experiments using the
NEESgrid framework are being planned.

A UCLA team of earthquake engineers plan to
perform field testing of a four-story office building in
Los Angeles. They intend to apply earthquake-type
and harmonic force histories to the building,
gathering acceleration, strain, and displacement data
using wireless sensor arrays (802.11 wireless
telemetry) to evaluate response and behavior. Data
and video streams will be recorded and archived at a

mobile command center before transmission to the
laboratory using satellite telemetry.

Earthquake engineers at RPI, UIUC and Lehigh
University plan to use the NEESgrid framework to
study soil-structure interaction in an experiment
involving two structural sites (UIUC and Lehigh),
one geotechnical site (RPI), and a computational
simulation node at NSCA. The experiment will focus
on an idealized model of the Collector-Distributor 36
of the Santa Monica Freeway that was damaged in
the 1994 Northridge earthquake of California.

Engineers at UC Davis are working on an
experiment that uses the NEESgrid framework to
characterize how the properties of soil change during
shaking or ground improvement. This experiment
includes remote operation of a robot arm that will be
attached to their centrifuge and of piezo-electric
bender element sources and receivers embedded
within the centrifuge model. The robot arm has
exchangeable tools: a stereo video camera tool for
telepresence, an ultrasound tool for imaging, a cone
penetrometer, a needle probe for high resolution
imaging, and a gripper tool for installation of piles
and manipulation/loading.

At the University of Minnesota, an experiment is
planned that will use the NEESgrid framework to
operate a six-degree-of-freedom controller, to apply
realistic deformations and loading quasi-statically to
large-scale structures. This experiment will also use
video and still images as data, using the NEESgrid
framework to trigger still image capture.

MOST and most follow-on experiments have lax
performance requirements; even long delays can be
tolerated without affecting results. We are working
with engineers from UC Berkeley, the University of
Colorado, SUNY-Buffalo, the University of
Minnesota, and Lehigh University to support
distributed experiments with near-real-time
requirements. This work has two facets: we are
working on improving NTCP performance, while the
earthquake engineers are developing simulation and
control software that can better tolerate delays.

6. Conclusion

Hybrid earthquake engineering tests produce
more accurate models, for some complex structures,
than physical or computational tests alone.
Distributed hybrid earthquake engineering tests
produce more accurate models for structures that are
even more complex that those that can be evaluated
by the more simple hybrid methods. As such, they are

important tools for helping improve the quality of our
physical infrastructure. The distribution of these
experiments is not gratuitous, but is a direct
consequence of the scale of the experiments and the
different types of testing and simulation modalities
required: e.g. coupling of soil response measured by
a scale model on a centrifuge and beam response
measured by large-scale structure stressed by
hydraulic actuators requires fundamentally different
test facilities. From this perspective, hybrid testing is
a prototypical Grid application, as resource sharing is
an essential aspect of the experiment.

The experience of working on MOST with
earthquake engineers reinforced our views on the
importance of fault-tolerance in a telecontrol service.
It has also demonstrated that having support for fault-
tolerance in the service isn’t enough; domain
scientists will generally need some guidance in
pushing these features to the outer edges of the
system (that is, to the clients and to the back-end
simulations and control systems).

NEESgrid is an important new test facility. A
Grid-based framework for distributed hybrid tests
makes these tests more practical to design and
perform, providing tools to deal with heterogeneity
and policy issues. In addition, as part of the exercise,
we have demonstrated the effectiveness of the service
oriented architecture and the stateful service model
that is at the core of OGSI. We believe that many of
the technologies that we have developed for
NEESgrid will have application in domains outside
of earthquake engineering. For example, NTCP and
NSDS can be used to control and observe a wide
range of devices, and we plan to investigate this in
the setting of other remote sensing and control
applications such as tele-microscopy. In summary,
NEESgrid has the potential to be of great value to the
earthquake engineering community as well as
representing an important class of Grid application.

7. Acknowledgements

This work was supported by the George E.
Brown, Jr. Network for Earthquake Engineering
Simulation (NEES) Program of the National Science
Foundation, Awards CMS-0117853 (NEESgrid),
CMS-0217325 (NEES MUST-SIM, UIUC), and
CMS-0086592 (NEES FHT, CU-BOULDER).

We gratefully acknowledge the contributions of
Dan Abrams, Cristina Beldica, Ian Buckle, Ben
Clifford, Mike D’Arcy, Amr Elnashai, Tom Finholt,
David Gehrig, Dan Horn, Erik Johnson, Young Suk

Kim, Dan Kuchma, Lee Liming, Ravi Madduri, Doru
Marcusiu, Gilberto Mosqueda, Narutoshi Nakata,
Gokhan Pekcan, Pawel Plaszczak, Tom Prudhomme,
Chase Phillips, Andrei Reinhorn, Hatem A Seliem,
Benson Shing, Eric Stauffer, Bozidar Stojadinovic,
Guangqiang Yang, and Nestor Zaluzec.

8. References

1. CompreHensive collaborativE Framework
(CHEF) Project Web Site, 2004. http://chefproject.org.

2. The MOST Experiment, July 30, 2003.
NEESgrid, Technical Report, 2003.
http://www.neesgrid.org/documents/MOST_document_v1.
0.pdf.

3. Allcock, W., Bester, J., Bresnahan, J., Chervenak,
A.L., Foster, I., Kesselman, C., Meder, S., Nefedova, V.,
Quesnel, D. and Tuecke, S., Secure, Efficient Data
Transport and Replica Management for High-Performance
Data-Intensive Computing. Mass Storage Conference,
2001.

4. Bonkalski, J., Anderson, R., Jones, S. and
Zaluzec, N. Bringing TelePresence Microscopy and
Science Collaboratories into the Class Room.
TeleConference Magazine, 17 (9). 1998.

5. Butler, R., Engert, D., Foster, I., Kesselman, C.,
Tuecke, S., Volmer, J. and Welch, V. A National-Scale
Authentication Infrastructure. IEEE Computer, 33 (12). 60-
66. 2000.

6. Foster, I., Kesselman, C., Nick, J.M. and Tuecke,
S. Grid Services for Distributed Systems Integration. IEEE
Computer, 35 (6). 37-46. 2002.

7. Foster, I., Kesselman, C., Tsudik, G. and Tuecke,
S., A Security Architecture for Computational Grids. 5th
ACM Conference on Computer and Communications
Security, 1998, 83-91.

8. Foster, I., Kesselman, C. and Tuecke, S. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer
Applications, 15 (3). 200-222. 2001.

9. Gray, J., The Transaction Concept: Virtues and
Limitations. Proceedings of the Fifth Symposium on
Reliability in Distributed Software and Database Systems,
1981, 144-154.

10. Johnston, W. Realtime Widely Distributed
Instrumentation Systems. Foster, I. and Kesselman, C. eds.
The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999, 75-103.

11. Kesselman, C., Butler, R., Foster, I., Futrelle, J.,
Marcusiu, D., Gulipalli, S., Pearlman, L. and Severance, C.
NEESgrid System Architecture. NEESgrid, Technical
Report, 2003.
http://www.neesgrid.org/documents/NEESgrid_SystemArc
h_v1.1.pdf.

12. Kesselman, C., Foster, I. and Prudhomme, T.
Distributed Telepresence: The NEESgrid Earthquake
Engineering Collaboratory. The Grid: Blueprint for a New

Computing Infrastructure (2nd Edition), Morgan
Kaufmann, 2004.

13. Kesselman, C., Pearlman, L. and Mehta, G.
Design for NEESgrid Telepresence Referral and Streaming
Data Services. NEESgrid, Technical Report NEESgrid-
2003-09, 2003.
http://www.neesgrid.org/documents/TR_2003_09.pdf.

14. Nakashima, M., Kato, H. and Takaoka, E.
Development of real-time pseudo dynamic testing.
Earthquake Engineering and Structural Dynamics, 21. 79-
92. 1999.

15. Pearlman, L., D’Arcy, M., Johnson, E.,
Kesselman, C. and Plaszczak, P. NEESgrid Teleoperation
Control Protocol (NTCP). NEESgrid, Technical Report
NEESgrid-2003-07, 2003.
http://www.neesgrid.org/documents/TR_2003_07_v0.4.pdf

16. Pearlman, L., D’Arcy, M., Plaszczak, P. and
Kesselman, C. NTCP Control Plugin. NEESgrid, Technical
Report NEESgrid-2003-16, 2003.
http://www.neesgrid.org/documents/TR_2003_162.pdf.

17. Pearlman, L., Welch, V., Foster, I., Kesselman,
C. and Tuecke, S., A Community Authorization Service for
Group Collaboration. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

18. Prudhomme, T., Kesselman, C., Finholt, T.,
Foster, I., Parsons, D., Abrams, D., Bardet, J.-P.,
Pennington, R., Towns, J., Butler, R., Futrelle, J., Zaluzec,
N. and Hardin, J. NEESgrid: A Distributed Virtual
Laboratory for Advanced Earthquake Experimentation and
Simulation: Scoping Study. NEESgrid, Technical Report
NEESgrid-2001-01, 2001. www.neesgrid.org.

19. Watanabe, E., Sugiura, K., Nagata, K.,
Yamaguchi, T. and Niwa, K., Multi-phase Interaction
Testing System by means of the Internet. 1st International
Conference on Advances in Structural Engineering and
Mechanics, Seoul, Korea, 1999, 43-54.

20. Welch, V., Siebenlist, F., Foster, I., Bresnahan,
J., Czajkowski, K., Gawor, J., Kesselman, C., Meder, S.,
Pearlman, L. and Tuecke, S., Security for Grid Services.
12th IEEE International Symposium on High Performance
Distributed Computing, 2003.

