
 

Distributed File System Support for Virtual Machines in Grid Computing 
 
 

Ming Zhao  Jian Zhang  Renato Figueiredo 
Advanced Computing and Information Systems Laboratory (ACIS) 

Electrical and Computer Engineering 
University of Florida, Gainesville, Florida 

{ming, jianzh, renato}@acis.ufl.edu 
 
 

Abstract 
 

This paper presents a data management solution which 
allows fast Virtual Machine (VM) instantiation and 
efficient run-time execution to support VMs as execution 
environments in Grid computing. It is based on novel 
distributed file system virtualization techniques and is 
unique in that: 1) it provides on-demand access to VM 
state for unmodified VM monitors; 2) it supports 
user-level and write-back disk caches, per-application 
caching policies and middleware-driven consistency 
models; and 3) it supports the use of meta-data associated 
with files to expedite data transfers. The paper reports on 
its performance in a WAN setup using VMware-based 
VMs. Results show that the solution delivers performance 
over 30% better than native NFS and can bring 
application-perceived overheads below 10% relatively to 
a local disk setup. The solution also allows a VM with 
1.6GB virtual disk and 320MB virtual memory to be 
cloned within 160 seconds when it is first instantiated 
(and within 25 seconds for subsequent clones).  
 
 
1. Introduction 
 

A fundamental goal of computational “Grids” is to 
allow flexible, secure sharing of resources distributed 
across different administrative domains [1]. To realize this 
vision, a key challenge that must be addressed by Grid 
middleware is the provisioning of execution environments 
that have flexible, customizable configurations and allow 
for secure execution of untrusted code from Grid users [2]. 
Such environments can be delivered by architectures that 
combine “classic” virtual machines (VMs) [3] and 
middleware for dynamic instantiation of VM instances on 
a per-user basis [4]. Efficient instantiation of VMs across 
distributed resources requires middleware support for 
transfer of large VM state files (e.g. memory, disk) and 
thus poses challenges to data management infrastructures. 
This paper shows that a solution for efficient transfer of 
VM state across domains can be implemented by means of 

extensions to a proxy-based distributed Grid virtual file 
system [5]. (In the context of the paper, VMs are referred 
as “classic” instruction-set VMs as defined in [3]) 

The architecture leverages existing implementations of 
a de-facto distributed file system standard for local-area 
networks (NFS [6]) and extends it at the user level to 
support 1) middleware-controlled encrypted file system 
channels and cross-domain authentication, 2) network 
latency hiding through client-side caching, and 3) 
meta-data at the file system level to efficiently handle VM 
memory state files. These mechanisms are implemented 
without requiring modifications to existing NFS clients 
and servers, and support the execution of unmodified 
application binaries – including para-virtualized VMs and 
user-mode VMs, which use file system to store machine 
state (e.g. VMWare hosted I/O [7], UML [8], ). 

This paper also reports on the performance of 
VMware-based VMs instantiated from state stored in 
wide-area distributed file systems – both conventional and 
proxy-enhanced NFS. Experimental results show that the 
proxy-enhanced file system improves the execution time 
of applications and experiences a relative small overhead 
with respect to locally stored VM state. Finally, results 
show that the use of on-demand transfers and meta-data 
information allows instantiation of a 
320MB-RAM/1.6GB-disk Linux VM clone in less than 
160 seconds for the first clone (and about 25 seconds for 
subsequent clones), considerably outperforming cloning 
based on transfer of entire files (in excess of 1100 
seconds). 

The contribution of this paper is a novel solution that 
extends user-level proxies to support on-demand, 
high-performance transfers for Grid VMs. It builds on and 
extends upon a distributed virtual file system 
infrastructure that provides a basis for establishing 
per-session, Grid-wide file system sessions. The solution 
addresses performance limitations associated with typical 
NFS setups in wide-area environments (such as buffer 
caches with limited storage capacity and write-through 
policies) by allowing for user-level (write-back) disk 
caches. In addition, the solution supports 
application-driven meta-data information to allow clients 



 

to satisfy requests using on-demand block-based or 
file-based transfers selectively. It does so in a manner that 
is transparent to the kernel (and to applications). Hence, it 
is not specific to a particular VM technology, and supports 
existing hosted VMs that allow an NFS file system to 
store machine state in regular files/filesystems. The paper 
also analyzes the performance of this solution 
quantitatively in a wide-area network environment, and 
demonstrates that it can outperform unmodified NFS and 
SCP-based file copying, in both VM instantiation through 
cloning and run-time execution. 

The rest of this paper is organized as follows. Section 2 
introduces an architecture for grid computing on VMs and 
discusses alternatives for handling transfer of VM state 
under this model. Section 3 describes distributed virtual 
file system techniques for supporting VMs, and Section 4 
presents results and discussions on the performance of this 
solution. Section 5 discusses related work, and Section 6 
concludes the paper. 

 
2. Grid Computing Using Virtual Machines 
 

A Grid computing system that supports unmodified 
applications (such as commercial applications for which 
source code access is not available) faces the challenge of 
preserving the integrity of resources in the presence of 
untrusted users and/or applications. Considerations of 
resource security, user isolation, legacy applications and 
flexibility in the customization of execution environments 
have led to architectures that employ “classic” VMs for 
Grid computing [4] to support problem-solving 
environments. A flexible, application-centric solution can 
be built based on the fact that, once defined, a VM 
execution environment can be encapsulated, archived by 
middleware and then be made available to users. Upon 
request, such a VM can be “cloned” and instantiated by 
middleware to exploit the computing power of distributed 

Grid resources. “Cloning” of a VM entails copying its 
states from a “golden” VM, configuring it with user 
specific information and then restoring it for the Grid user. 

Mechanisms present in existing middleware can be 
utilized to support this functionality by treating VM-based 
computing sessions as processes to be scheduled (VM 
monitors) and data to be transferred (VM state). Hence, 
data management is the key: without middleware support 
for transfer of VM state, computation is tied to the 
end-resources that have a copy of a user’s VM image; 
without support for transfer of application data, 
computation is tied to the end-resources that have local 
access to a user’s files. However, with appropriate data 
management support (Figure 1), the components of a Grid 
VM session can be distributed across three different 
logical entities: the “image server”, which stores VM base 
configuration images; the “compute server”, which 
provides the capability of instantiating VMs; and the “data 
server”, which stores user data. 

Support for VMs that can be dynamically instantiated 
across Grid resources poses challenges to the data 
management infrastructure. For various VM technologies, 
such as hosted I/O VMWare [7], User-Mode Linux [8], 
and Xen [9], the image of a VM can be represented by 
memory/disk state files or filesystems that are often large 
(GBytes) and must be transferred efficiently from an 
image server to a compute server (Figure 1). Two 
approaches are conceivable: one is to transfer the entire 
VM state before instantiation; another is to leverage host 
O/S support for on-demand transfer of file system data to 
allow the VM state transferred on demand as requested by 
the VM monitor. Full-state transfers have the 
disadvantages of large setup latencies, and transfer/storage 
of unnecessary data on the compute server – typical VM 
sessions only reference a small fraction of the disk state 
during execution [10]. On-demand transfers are possible 
at the granularity of file blocks in distributed file systems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Middleware 
supported data 
management for both 
virtual machine 
images and user file 
systems allows for 
application-tailored 
VM instantiation 
(VM1, VM2, VM3) 
across Grid 
resources (compute 
servers C1/C2, image 
servers I1/I2, data 
servers D1/D2). 
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such as NFS, but the network latency of accessing a server 
can lead to poor performance for writes, and if capacity 
misses occur frequently in memory file system buffers. 
The techniques presented in Section 3 describe a data 
management infrastructure that supports efficient 
on-demand transfer of data associated with a VM’s image. 

In combination with complementary middleware for 
resource and user management, and for user interfaces, the 
availability of Grid VMs enables the design of 
problem-solving systems that are highly flexible. For 
example, the In-VIGO1 [11] system allows on-demand 
creation of a per-user “virtual workspace” that provides a 
Web browser-capable interactive graphical interface to a 
Linux-based VM clone, as well as an upload/download 
facility through a file manager that runs within the VM. 
The workspace is dynamically built by the middleware in 
a user-transparent manner by cloning a suspended VM 
image and configuring the clone with user-specific 
information, and by mounting the user’s Grid virtual file 
system inside the VM clone. 

 
3. Grid Virtual File System for Virtual 
Machines 
 
3.1. Background 
 

Current Grid data management solutions typically 
employ file-staging techniques to transfer files between 
user accounts in the absence of a common file system. File 
staging approaches require the user to explicitly specify 
the files that need to be transferred (e.g. GridFTP [12]), or 
transfer entire files at the time they are opened (e.g. GASS 
[13]), which may lead to unnecessary data transfers (e.g. 
of an entire VM image, even when only a fraction of it is 
required for computation). Data management solutions 
supporting on-demand transfer for Grids have also been 
investigated in related work, as discussed in Section 5. 
However, these solutions require customized application 
libraries and/or file servers. 

Previous work has shown that a data management 
model supporting on-demand data transfers without 
requiring dynamically-linked libraries or changes to native 
O/S file system clients and servers can be achieved by 
way of two mechanisms – logical user accounts [14] and a 
distributed virtual file system [5]. Such a distributed 
virtual file system can be built through the use of 
virtualization layer on top of NFS, a de-facto distributed 
file system standard, allowing data to be transferred 
on-demand between Grid storage and compute servers for 
the duration of a computing session. This functionality is 
realized via extensions to existing NFS implementations 
that are at user-level, requiring neither modification of 

                                                           
1 The In-VIGO prototype can be accessed from http://invigo.acis.ufl.edu; 

courtesy accounts are available. 

O/S clients and servers, nor of applications. The resulting 
Grid virtual file system (GVFS) utilizes user level proxies 
to dynamically map between short-lived user identities 
allocated by middleware on behalf of a user [15] 
Furthermore, data transfer in GVFS is on demand and 
transparent to the user. 

By supporting unmodified applications, GVFS can 
inherently support implementations of different flavors of 
VM technologies, including commercial and open-source 
designs such as VMware, UML and Xen. However, 
because VM state data are often large in size and remote 
accesses often have high latencies, extensions to the Grid 
virtual file system are necessary to improve its 
performance in this environment. The extensions proposed 
in this paper are illustrated in Figure 2 and described in 
the remaining of this section. The extensions are oriented 
towards file system sessions established for VM transfers, 
but are generally applicable and not tied to any particular 
VM implementation. 

 
3.2. Extensions to support VM transfer 
 

3.2.1. Disk-based file system caches.  
Caching is a classic, successful technique to improve 

the performance of computer systems by exploiting 
temporal and spatial locality of references and providing 
high-bandwidth, low-latency access to cached data. The 
NFS protocol allows the results of various NFS requests 
to be cached by the NFS client [16]. However, although 
memory caching is generally implemented by NFS clients, 
disk caching is not typical. Disk caching is especially 
important in the context of a distributed file system, 
because the overhead of a network transaction is high 
compared to that of a local I/O access. The large storage 
capacity of disks implies great reduction on capacity and 
conflict misses [17]. Complementing the memory cache 
with a disk cache can form an effective cache hierarchy. 
There are implementations of distributed file systems that 
exploit these advantages, for example, AFS transfers and 
caches entire files in the client disk, and CacheFS supports 
disk-based caching of NFS blocks. However, these 
designs require kernel support, and are not able to employ 
per-user or per-application caching policies. 

In contrast, GVFS is extended to employ client-side 
proxy managed disk cache in a unique way, through 
user-level proxies that can be customized on a per-user or 
per-application basis. For instance, cache size and write 
policy can be optimized according to the knowledge of a 
Grid application. A more concrete example is enabling 
file-based disk caching by meta-data handling and 
application-tailored knowledge to support heterogeneous 
disk caching (Section 3.2.2). The proxy cache can be 
deployed in systems which do not have native kernel 
support for disk caching, e.g. Linux. Because the proxy 
behaves both as a server (receiving RPC calls) and a client  
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(issuing RPC calls), it is possible to establish a virtual file 
system by forwarding along a chain of multiple proxies. 
Thus in addition to the server-side proxy (responsible for 
authenticating requests and mapping identities), another 
proxy can be started at the client-side to establish and 
manage disk caches, as illustrated in Figure 2. 
Furthermore, a series of proxies, with independent caches 
of different sizes, can be cascaded between client and 
server, supporting scalability to a multi-level cache 
hierarchy. 

Disk caching in GVFS is implemented by the file 
system proxy and operates at the granularity of NFS RPC 
calls [18]. The cache is structured in a way similar to 
traditional block-based hardware designs; the disk cache 
contains file banks that hold frames in which data blocks 
and cache tags can be stored. Cache banks are created on 
the local disk by the proxy on demand. The indexing of 
banks and frames is based on a hash of the requested NFS 
file-handle and offset and allows for associative lookups. 
The hashing function is designed to exploit spatial locality 
by mapping consecutive blocks of a file into consecutive 
sets of a cache bank. Caches of different proxies can be 
independently managed; they may be configured with 
different sizes, associativities, as well as data block sizes 
(up to the NFS protocol limit of 32KB). The design also 
allows for different proxies to share disk caches for 
read-only data.  

The GVFS proxy disk cache also supports the 
write-back policy for write operations, an important 
feature in wide-area environments to hide long write 
latencies. Write-back caching can be applied to VMs in 
Grid computing in different ways. It supports write-back 
of persistent virtual disks that transparently complements 
kernel-level buffering and application-level write-back 
schemes with high-capacity storage. It can also support 

write-back of redo logs for non-persistent disks of VMs 
that may be migrated across Grid resources. 

Typically, kernel-level NFS clients are geared towards 
a local-area environment and implement a write policy 
with support for staging writes for a limited time in kernel 
memory buffers. Kernel extensions to support more 
aggressive solutions, such as long-term, high-capacity 
write-back buffers are unlikely to be undertaken; NFS 
clients are not aware of the existence of other potential 
sharing clients, thus maintaining consistency in this 
scenario is difficult. The write-back proxy cache described 
in this paper leverages middleware support to implement a 
session-based consistency model from a higher abstraction 
layer: it supports O/S signals for middleware-controlled 
writing back and flushing of cache contents. This model 
of middleware-driven consistency is assumed in this paper; 
it is sufficient to support many Grid applications, e.g. 
when tasks are known to be independent by a scheduler 
for high-throughput computing (e.g. as in Condor [19]). 
 
3.2.2. Meta-data handling 

Another extension made to GVFS is the handling of 
meta-data information. The main motivation is to use 
middleware information to generate meta-data for certain 
categories of files according to the knowledge of Grid 
applications. Then, a GVFS proxy can take advantage of 
the meta-data to improve data transfer. When the proxy 
receives a NFS request to a file which has meta-data 
associated with, it processes the meta-data and takes the 
described actions on the file accordingly. In the current 
implementation, the meta-data file is stored in the same 
directory as the file it is associated with, and has a special 
filename so that it can be easily looked up. The meta-data 
contain the data characteristics of the file it is associated 
with, and define a sequence of actions which should be 
taken on the file when it is accessed. 

Figure 2: Proxy extensions for VM image transfers. At the compute server, the VM monitor issues 
system calls that are processed by the NFS client. Requests may hit in the memory file systems 
buffer (1); those that miss are processed by the user-level proxy (2). At the proxy, requests that 
hit in the block-based disk cache (3), or in the file-based disk cache if matching stored meta-data 
(4), are satisfied locally; proxy misses are forwarded as SSH-tunneled RPC calls to a remote 
proxy (5), then to the kernel server (6), and finally satisfied from data on the server (7). 
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For example, resuming a VMware VM requires 
reading the entire memory state file (typically in hundreds 
of MBytes). Transferring the entire contents of this file is 
time-consuming; however, with application-tailored 
knowledge, the memory state file can be pre-processed to 
generate a meta-data file specifying which blocks in the 
memory state are all zeros. Then, when the memory state 
file is requested, the client-side proxy, through processing 
of the meta-data, can service requests to zero-filled blocks 
locally, request only non-zero blocks from the server, then 
reconstruct the whole memory state and present it to the 
VM monitor. Normally the memory state contains many 
zero-filled blocks [9] that can be filtered by this technique, 
and the traffic on the wire can be greatly reduced while 
instantiating a VM. For instance, when resuming a 
512MB-RAM RedHat 7.3 VM which is suspended in the 
post-boot state, the client issues 65,750 NFS reads while 
60452 of them can be filtered out by the above technique. 

Another example of GVFS’ meta-data handling 
capability is to help the transfer of large files and enable 
file-based disk caching. Inherited from the underlying 
NFS protocol, data transfer in GVFS is on-demand and 
block-by-block based (typically 4K to 32Kbytes in size), 
which allows for partial transfer of files. Many 
applications can benefit from this property, especially 
when the working set of the accessed files are 
considerably smaller than the original sizes of the files. 
For example, accesses to the virtual disk of a “classic” 
VM are typically restricted to a working set that is much 
smaller (<10%) than the large virtual disk file [20][9]. But 
when large files are indeed completely required by client 
application (e.g. when a remotely stored memory state file 
is requested by VMware to resume a VM), block based 
data transfer becomes inefficient.  

However, if Grid middleware can speculate in advance 
which files will be entirely required based on its 
knowledge of the application, it can generate meta-data 
for GVFS proxy to expedite the data transfer. The actions 
described in the meta-data can be “compress”, “remote 
copy”, “uncompress”, and “read locally”, which means 
when the referred file is accessed by the client, instead of 
fetching the file block by block from server, the proxy will: 
1) compress the file on the server (e.g. using GZIP); 2) 
remote copy the compressed file to the client (e.g. using 
GSI-enabled SCP) ; 3) uncompress it to the file cache (e.g. 
using GUNZIP); and 4) generate results for the request 
from the locally cached file. Once the file is cached all the 
following requests to the file will also be satisfied locally 
(Figure 2). The file cache can also support write-back, 
which includes similar steps of compressing, uploading 
and uncompressing. 

Hence, the proxy effectively establishes an on-demand 
fast file-based data channel, which can also be secure by 
employing SSH tunneling for data transfer, in addition to 
the traditional block-based NFS data channel, and a 
file-based cache which complements the block-based 

cache in GVFS to form a heterogeneous disk caching 
scheme. The key to the success of this technique is the 
proper speculation of an application’s behavior. Grid 
middleware should be able to accumulate knowledge for 
applications from their past behaviors and make intelligent 
decisions based on the knowledge. For instance, since for 
VMWare the entire memory state file is always required 
from the image server before a VM can be resumed on the 
compute server, and since it is often highly compressible, 
the above technique can be applied very efficiently to 
expedite the transfer of the memory state file. 
 
3.2.3. Support for persistent and non-persistent Grid 
VMs 

VMs can be deployed in a Grid in two different kinds 
of scenarios, which pose different requirements of data 
management to the distributed virtual file system. In the 
first scenario, the Grid user is allocated a dedicated VM 
which has a persistent virtual disk on the image server. It 
is suspended at the current state when the user leaves and 
resumed when the user comes again, while the user may 
or may not start computing sessions from the same server. 
When the session starts, the VM should be efficiently 
instantiated on the compute server, and after the session 
finishes, the modifications to the VM state from the user’s 
executions should also be efficiently reflected on the 
image server. The extended GVFS can well support this 
scenario in that: 1) the use of meta-data handling can 
quickly restore the VM from its checkpointed state; 2) the 
on-demand block-based access pattern to the virtual disk 
can avoid the large overhead incurred from downloading 
and uploading the entire virtual disk; 3) proxy disk cache 
can exploit locality of references to the virtual disk and 
provide high-bandwidth, low-latency access to cached file 
blocks; and 4) write-back caching can effectively hide the 
latencies of write operations perceived by the user, which 
are typically very large in a wide-area environment, and 
submit the modifications when the user is off-line or the 
session is idle.  

In the other scenario, the image server stores a number 
of non-persistent VMs for the purpose of “cloning”. These 
generic images have application-tailored hardware and 
software configurations, and when a VM is requested 
from a compute server, the image server is searched 
against the requirements of the desired VM. The best 
match is returned as the “golden” image, which is then 
“cloned” to the compute server. The cloning process 
entails copying the state from the “golden” image, 
restoring it from checkpointed state, and setting up the 
clone with customized configurations. After the new clone 
“comes to life”, computing can start in the VM and 
modifications to the original state are stored in the form of 
redo logs. So data management in this scenario requires 
efficient transfer of VM state from image server to 
compute server, and also efficient writes to redo logs for 
checkpointing.  



 

Similar to the first scenario, the extended GVFS can 
quickly instantiate a cloned VM by meta-data handling for 
memory state file and on-demand block-based access to 
virtual disk files. Instead of copying the entire virtual disk, 
only symbolic links are made to the virtual disk files on 
compute server. After a computation starts, the proxy disk 
cache can help speedup access to the virtual disk after the 
cache becomes “warm”, and write-back can help save user 
time for writes to the redo logs. However, a differentiation 
in this scenario is that a small set of golden images can be 
used to instantiate many clones, e.g. for concurrent 
execution of a high-throughput task. The proxy disk cache 
can exploit temporal locality among cloned instances and 
accelerate the cloning process. On the compute server, the 
cached data of memory state and virtual disk from 
previous clones can greatly expedite new clonings from 
the same “golden” images. And a second-level proxy 
cache can be setup on a LAN server, as explained in 
Section 3.2.1, to further exploit the locality and provide 
high speed access to the state of golden images for 
clonings to compute servers in the same local network. 
 
4. Performance 
 
4.1. Experimental setup 
 

A prototype of the approach discussed in this paper has 
been built upon the implementation of 
middleware-controlled user-level file system proxies [21]. 
The core proxy code has been extended to support private 
data channels [22], client-side disk caching and meta-data 
handling. This section evaluates the performance for 
supporting VM in the Grids by analyzing the data from 
experiments of a group of benchmarks. 

Experiments are conducted in both local-area and 
wide-area environments. The LAN image server is a 
dual-processor 1.8GHz Pentium III cluster node with 1GB 
of RAM and 576GB of disk storage. The WAN image 
server is a dual-processor 1GHz Pentium-III cluster node 
with 1GB RAM and 45GB disk. In the experiments on 
application execution (Section 4.2), the compute server is 
a 1.1GHz Pentium-III cluster node with 1GB of main 
memory and 18GB of SCSI disk; in the experiments on 
VM cloning (Section 4.3), the compute servers are cluster 
nodes which have four 2.4GHz Xeon processors with 1GB 
RAM and 18GB disk each. The compute servers are 
installed VMware GSX server 2.5 to support x86-based 
VMs. They are connected with the LAN image server in a 
100Mbit/s Ethernet at the University of Florida, and 
connected with the WAN image server through Abilene 
between Northwestern University and University of 
Florida. The proxy cache is configured with 512 file banks 
which are 16-way associative, and has a capacity of 
8GBytes, but typically only 1~3GBtyes of cache has been 
actually used in the experiments. 

 

4.2. Experiments on application execution 
 
4.2.1. Benchmarks and scenarios 

Three benchmarks are selected to evaluate the 
performance of run-time execution of typical applications: 

SPECseis96 is taken from the SPEC high-performance 
group benchmarks. It consists of four phases, where the 
first phase generates a large trace file on disk, and the last 
phase involves intensive seismic processing computations. 
The benchmark is tested in sequential mode with the small 
dataset. It models a scientific application that is both I/O 
intensive and compute intensive. 

LaTex benchmark is designed to model an interactive 
document processing session. It is based on the generation 
of a PDF (Portable Document File) version of a 190-page 
document edited by LaTeX. It runs the “latex”, “bibtex” 
and “dvipdf” programs in sequence and iterates 20 times, 
where each time a different version of one of the LaTeX 
input files is generated by the “patch” command. 

It is worth to be emphasized that a VM-based Grid 
execution environment allows users to customize an 
execution environment for an application, encapsulate its 
virtual state and replicate it across distributed resources by 
means of dynamic instantiation of VM copies. Users of a 
VM-based Grid can be provided with an interactive 
environment to customize their VMs, and the middleware 
is capable of archiving, replicating and instantiating such 
environments on any available physical resource capable 
of supporting VMs. In this environment, it is important 
that interactive sessions for VM setup show good response 
times to the Grid user. Thus, the Latex benchmark is 
chosen to study this scenario. 

Kernel compilation represents file system usage in a 
software development environment, similar to the Andrew 
benchmark [23].  The kernel is a Red Hat Linux 2.4.18, 
and the compilation consists of four major steps, “make 
dep”, “make bzImage”, “make modules” and “make 
modules_install”, which involve substantial reads and 
writes on a large number of files. 

The execution times of the above benchmarks within a 
VM, which has 512MB RAM and 2GB virtual disk (in 
VMWare plain disk mode), installed with Linux Red Hat 
7.3, the benchmark applications and their data sets, are 
measured in the following four scenarios: 

Local: The VM state is stored in a local disk file 
system. 

LAN: The VM state is stored in a directory 
NFS-mounted from the LAN image server. Data access is 
forwarded by GVFS proxies via SSH tunnels. 

WAN: The VM state is stored in a directory 
NFS-mounted from the WAN image server. Data access is 
forwarded by GVFS proxies via SSH tunnels. 

WAN+C: The setup is the same as the WAN scenario 
except that client-side proxy disk caching is enabled. 

 



 

4.2.2. Results and analysis 
The experiments are initially setup with “cold” caches 

(both kernel buffer cache and proxy disk cache) by 
un-mounting and mounting the virtual file system, and 
flushing the proxy caches before an execution. Figure 3 
shows the execution times for the four phases of the 
SPECseis. The performance of the compute-intensive part 
(phase 4) is within a 10% range across all scenarios. The 
results of the I/O intensive part (phase 1), however, shows 
a large difference between then WAN and WAN+C 
scenarios – the latter is faster by a factor of 2.1. The 
benefit of a write-back policy is evident in the phase 1, 
where a large file that is used as an input to the following 
phases is created. The proxy cache also brings the total 
execution time down 33 percent in the wide-area 
environment. 

The LaTeX benchmark results in Figure 4 show that in 
wide-area environment interactive users would experience 
a startup latency of 225.67 seconds (WAN), or 217.33 
seconds (WAN+C). This overhead is substantial when 
compared to Local and LAN, which execute the first 
iteration in about 12 seconds. Nonetheless, the start-up 
overhead in these scenarios is much smaller than what one 
would experience if the entire VM state would have to be 
downloaded from the image server at the beginning of a 
session (2818 seconds). During subsequent iterations, the 
kernel buffer can help to reduce the average response time 
for WAN scenario to about 20 seconds. The proxy disk 
cache can further improve the average response time for 
WAN+C scenario to very close to that of Local (8% 
slower) and LAN (6% slower) scenarios, but 54% faster 
than that of non-cached WAN scenario. The time needed 
to flush cached dirty blocks if write-back is enabled is 
about 160 seconds, which is also much shorter than the 
uploading time (4633 seconds) of the entire state. 

Experimental results from the kernel compilation 
benchmark are illustrated in Figure 5. The first run of the 
benchmark in WAN+C scenario which begins with “cold” 

caches shows an 84% overhead compared to that of Local 
scenario. However, for the second run, the “warm” caches 
help to bring the overhead down to 9%. And compared to 
the second run of LAN scenario, it is less than 4% slower. 
The availability of the proxy cache allows WAN+C to 
outperform WAN more than 30 percent. As in the LaTeX 
case, the data show that the overhead experienced in an 
environment where program binaries and/or datasets are 
partially re-used across iterations (e.g. in application 
development environments), the response times of the 
WAN-mounted virtual file system are acceptable. 

 
4.3. Experiments on virtual machine cloning 
 

4.3.1. Benchmark and scenarios 
Another benchmark is designed to investigate the 

performance of GVFS’ support for cloning VMs. The 
cloning scheme is as discussed in Section 3.2.3, which 
includes copying the VM configuration file, copying the 
VM memory state file, building symbolic links to the 
virtual disk files, configuring the cloned VM, and at last 
resume the new VM. The execution time of the 
benchmark is also measured in five different scenarios: 

Local: The VM images are stored in a local disk file 
system. 

WAN-S1: The VM images are stored in a directory 
NFS-mounted from the WAN image server. During the 
experiment, a single VM image is cloned eight times to 
the compute server sequentially. The clonings are 
supported by GVFS with all extensions, including private 
data channels, proxy disk caching and meta-data handling. 
It is designed to evaluate the performance when there is 
temporal locality among clonings. 

WAN-S2: The setup is the same as WAN-S1 except 
that eight different images are each cloned to the computer 
server once sequentially. It is designed to evaluate the 
performance when there is no locality among clonings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: SPECseis benchmark execution 
times (minutes:seconds). The results show 
times for each execution phase. 
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Figure 4: LaTeX benchmark execution times 
(seconds). The execution times of the first iteration, 
the average execution times of the following 19 
iterations, and the total execution times are listed. 
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WAN-S3: The setup is the same as WAN-S2 except 
that a LAN server provides second-level proxy disk cache 
to the compute server. Eight different images are cloned, 
which are new to the compute server, but are pre-cached 
on the LAN server due to previous clones for other 
computer servers in the same LAN. This setup is designed 
to model a scenario where there is temporal locality 
among the VMs cloned to compute servers in the same 
LAN. 

WAN-P: The VM images are stored in a directory 
NFS-mounted from the WAN image server to eight 
computer servers, which are eight nodes of a cluster. 
During the experiment, eight VM images are cloned to the 
compute servers in parallel. The clonings are supported by 
GVFS with all extensions. 

 
4.3.2. Results and analysis 

Figure 6 shows the cloning times for a sequence of VM 
images which have 320MB of memory and 1.6GB of 
virtual disk. In comparison with the range of GVFS-based 
cloning times shown in these figures, if the VM is cloned 
using SCP for full file copying, it takes approximately 
twenty minutes to transfer the entire image. If the VM 
state is not copied but read from a pure NFS-mounted 
directory, the cloning takes more than half an hour 
because the block-based transfer of the memory state file 
is very slow. However, the enhanced GVFS with proxy 
disk caches and meta-data support to compress (using 
GZIP) and transfer (using SCP) the VM’s memory state 
can greatly speed up the cloning process to within 160 
seconds. Furthermore, if there is temporal locality of 
access to memory state and virtual disk files among the 

clones, the proposed solution even allows cloning to be 
performed within 25 seconds if data are cached on local 
disks or within 80 seconds if data are cached on a LAN 
server.  

Table 1 compares sequential cloning with parallel 
cloning. In the experiment on WAN-P scenario, the eight 
compute servers share a single image server and 
server-side GVFS proxy. But when the eight clonings start 
in parallel, each client-side GVFS proxy on every 
compute server spawns a file-based data channel to fetch 
the memory state file on demand. The speedup from 
parallel cloning versus sequential cloning is more than 
700% when the caches are cold and more than 600% 
when the caches are warm. In either scenarios, the support 
from GVFS is on-demand, and transparent to user and 
VM monitor. And, as demonstrated in Section 4.2, 
following a machine’s instantiation via cloning, GVFS 
can also improve the VM’s run-time performance 
substantially. 

 
 
 
 
 
 
 

 Total time when 
caches are cold 

Total time when 
caches are warm 

WAN-S1 1056 seconds 200 seconds 

WAN-P 150.3 seconds 32 seconds 

Figure 5: Kernel compilation benchmark 
execution times (hours:minutes). The results 
show times for four different phases. Results 
have been colleted for two consecutive runs of 
the benchmark; in the first run, buffer and 
proxy cache are “cold”, while in the second 
run they are “warm”. 
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Figure 6: VM cloning times (seconds) for a 
sequence of images (from 1 to 8) with 320MB 
of memory and 1.6GB of virtual disk. It takes 
1127 seconds if copying an image entirely by 
SCP. If only copying the memory state and 
accessing the virtual disk from a directory 
mounted from the image server without GVFS’ 
support, it takes 2060 seconds to clone a VM. 

Table 1: Total time of cloning eight VM images in 
WAN-S1 and WAN-P when the caches (kernel 
buffer cache, proxy block-based cache and 
proxy file-based cache) are cold and warm. 



 

5. Related Work 
 

Data management solutions such as GridFTP [12] and 
GASS [13] provide APIs upon which applications can be 
programmed to access data on the Grid. Legion [24] 
employs a modified NFS server to provide access to a 
remote file system. The Condor system and Kangaroo 
utilize remote I/O mechanisms implemented via bypass 
mechanisms that rely on system call trapping by dynamic 
library linking to allow applications to access files [19] 
[25]; a library-based approach to the movement of VM 
images is also taken in [9]. However, library-based 
approaches would not work with statically linked software. 
NeST [26] is a software Grid storage appliance that 
supports the NFS protocol, among others; however only a 
restricted subset of the protocol and anonymous accesses 
are supported, and the solution does not integrate with 
unmodified O/S NFS clients. In contrast, the solution of 
this paper allows unmodified applications to access Grid 
data using conventional operating system clients/servers. 

The self-certifying file system (SFS [27]) is another 
example of a file system that uses proxies that forward 
NFS protocol calls and implement cross-domain 
authentication and encryption. The approach of this paper 
differs from SFS in several ways. A key difference is that 
the approach of this paper employs dynamically-created 
per-user file system proxies, allowing for 
middleware-controlled caching policies (e.g. write-back vs. 
write-through) on a per-user basis, and the setup of 
multiple levels of proxy caching. In contrast, SFS employs 
a single proxy server for multiple users.  

The NFS V4 [28] protocol includes provisions for 
aggressive caching. However, V4 implementations have 
not been deployed in Grid setups; implementations of 
versions 2 and 3 of the protocol are available for a wide 
variety of platforms. 

A related project has investigated solutions that 
improve the performance of the migration of classic VMs 
[10]. Their work focuses on mechanisms to transfer 
images of virtual desktops, possibly across low-bandwidth 
links. Common between their approach and this paper are 
mechanisms for on-demand block transfers, and 
optimizations based on the observation that zero-filled 
blocks are common in suspended VM memory images. A 
key difference lies in fact that the techniques of this paper 
are independent from applications and are implemented 
through the interception of NFS/RPC calls and reusing 
O/S clients and servers available in typical Grid resources, 
while their approach uses modified libraries as a means of 
intercepting VMM accesses to files and employs a 
customized protocol. 

 
6. Conclusions and future work 
 

Grid computing with classic virtual machines promises 
the capability of provisioning a secure and highly flexible 

computing environment for its users. To achieve this goal, 
it is important that Grid middleware provides efficient 
data management service for VMs – for both VM state 
and user data. This paper shows that user-level techniques 
that build on top of de-facto distributed file system 
implementations can provide an efficient framework for 
this purpose. These techniques can be applied to VMs of 
different kinds, so long as the monitor allows for state to 
be stored in file systems that can be mounted via NFS. 

Results show that user-level proxy caches improve 
upon the performance of conventional NFS over a 
wide-area network. Results also show that, with “warm” 
caches, the enhanced file system leverages native O/S 
support for buffer caches and has small overhead when 
compared to a local-disk file system. Finally, results show 
that the use of on-demand transfers and meta-data 
information allows instantiation of a 
320MB-RAM/1.6GB-disk Linux VM clone in less than 
160 seconds for the first clone (and less than 25 seconds 
for subsequent clones), considerably outperforming 
cloning based on transfer of entire files, and on 
non-enhanced NFS. 

Directions for future work include distributed virtual 
file system support for efficient checkpointing and 
migration of VM instances for load-balancing and 
fault-tolerant execution, and dynamic profiling of 
application data access behavior to support pre-fetching 
and high-bandwidth transfers of large data blocks in a 
selective manner, using protocols such as GridFTP for 
inter-proxy transfers. 
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