
Orestes: a REST protocol for horizontally scalable cloud
database access

Felix Gessert1

Master Student

7gessert@informatik.uni-
hamburg.de

Florian Bücklers1

Master Student

7bueckle@informatik.uni-
hamburg.de

Norbert Ritter1

Professor

ritter@informatik.uni-
hamburg.de

1
Computer Science Department, University of Hamburg

Vogt-Kölln Straße 33, 22527 Hamburg, Germany

ABSTRACT

In our poster, we are going to describe a REST/HTTP

database access protocol for object-oriented persistence that

allows read requests to scale horizontally. Scalability is

achieved by using Web Proxy Caches to serve database

objects, while keeping strong ACID transaction semantics

through optimistic verification mechanisms. We call this

protocol Orestes (Objects RESTfully encapsulated in

standard formats) and validate the approach by comparative

benchmarks for a cloud computing scenario.

1. INTRODUCTION
The emergence of cloud computing and NoSQL databases

has demonstrated a clear demand for scalable database

systems with cloud capable, web-based interfaces. With

Orestes we try to reconcile the desirable system properties

of low latency, transparent horizontal scalability for read

requests, HTTP access based on standards and

independence of database and client APIs. These four

properties of database access are crucial for novel

application architectures. In particular applications deployed

in cloud environments mostly need to interact with their

services (one of which is persistence) via stateless HTTP.

Also databases offered as a service need means to scale the

read demands of the clients and to provide low-latency

access to mitigate the effect of possible geographic

application/database distribution. Our approach does not

inherently scale write loads, since this aspect of scalability

is left to the database that processes these writes. Horizontal

read scalability on the other hand is provided by our

approach on the protocol level through web caching.

Orestes is designed for object-oriented persistence and

strong consistency and can therefore be backed by APIs like

JDO (Java Data Objects) or JPA (Java Persistence API) on

the client side and object oriented databases or relational

databases with an object-relational-mapping layer on the

server side. The scalable REST/HTTP protocol introduced

by Orestes is therefore independent of the client side

programming language and the database backend, which

can be combined arbitrarily.

2. RELATED WORK
The core of Orestes is its RESTful HTTP protocol. The

REST (Representational State Transfer) architectural style

was introduced by Fielding [2] and is now widely regarded

as a modern way of exposing services with appropriate

characteristics and a clear structure. Database caching is a

well-researched topic [3] with many different placement and

implementation options. To our best knowledge the

combination of the web caching model with database access

has not yet been researched or implemented and hence is a

new strategy to make databases profit from web

technologies. Web-caching is the scalability model

implemented by the HTTP protocol [1]. We intend to show

that the same scalability model that allows web sites to scale

can also scale databases.

3. CONCEPT
With Orestes we aim to achieve four key properties. Table 1

gives a summary of the mechanisms leveraged to obtain

them. In this section we describe how these mechanisms

work, whereas the next sections describe how they are

implemented and evaluated.

Table 1. Properties achievable by Orestes

Property Mechanism

Read scalability Caching of database objects

Low latency Cache deployment in client network

Loose coupling of

client API and

database system

Generic HTTP access protocol and

resource structure including schema,

transactions, querys and objects

Standard formats
Extensible HTTP content negotiation

and definition of JSON formats

3.1 Protocol
The client interacting with the database uses some object

oriented API (e.g. JDO) to retrieve, query and write objects

in the database. Orestes is the network layer gluing both

together. The HTTP interface is defined by resources with

URLs identifying the database abstractions querys,

transactions, objects, schema and settings. Each object has a

schema defining its structure, a version number and a URL

used to interact with it through HTTP methods, namely

GET (retrieve), PUT (create/update), POST (update) and

DELETE.

The typical access pattern observed in object oriented

persistence is navigation: a client retrieves objects, loads

referenced objects or retrieves their collections. Each step of

dereferencing normally results in a network round trip.

Web-caching reduces the impact of the network access.

The HTTP web-caching model allows objects to have an

assigned lifetime for which they are regarded as fresh. It

also provides a revalidation mechanism, which can be used

to confirm the freshness of an object by asking the origin

sever based on a version number (called ETag) or a

modification date. The key difficulty is the fact, that the

database (the origin server) cannot invalidate objects stored

in web-caches upon updates, unless the web-cache is

deployed as a so called reverse proxy cache in the database

network. Assigning a static caching lifetime to database

objects therefore introduces the possibility of stale reads:

two caches store the same object, one client changes the

object, another client loads a stale version of the same object

using the other cache. To deal with stale reads in Orestes,

the database uses optimistic concurrency control, for

instance optimistic locking. Orestes utilizes optimistic

transactions since objects cached out of the control of the

database system can neither be directly locked nor

invalidated. Using the strengths of optimistic transactions,

Orestes thus mainly addresses read-intensive applications.

The formats used to represent objects, queries, etc. are

interchangeable. If for instance the database supports SQL

queries, the client can issue the query in an appropriate

standard media type. We define a default JSON format for

all representations in the Orestes protocol. By following the

REST/HTTP protocol a loose coupling of the client side

persistence API and the database system is achieved – both

can be combined in any combination since the middle tier is

the common Orestes protocol.

3.2 Example
In this section we briefly describe how a client can access

database objects and where web-caches come into play. The

URL of each object consists of three parts. The domain of

the server is followed by /db/ where all dynamic data of the

database are located. The second part indicates the type of

the object. A type is represented by a namespace and a class

name. The third part represents the ID of the object. If a

client intends to load an instance of a Person class with a

given ID 3, it performs an HTTP GET request for the

http://example.com/db/simulation.classes/Person/3 URL.

This HTTP request will be routed through the network to

the example.com server. On its way to the server, the

request may pass one or more web-caches. Each of these

web-caches will check its local cache for a previously

received, cachable response for that request (i.e. the object).

If resident in the cache, the object is directly returned

without forwarding the request to the origin server.

Otherwise the origin server responds to the forwarded

request. The client receives a JSON document that includes

all metadata (like the version number) and fields of the

loaded object.

4. IMPLEMENTATION
We developed an implementation of the Orestes network

layer in Java, which is easily extensible for new formats,

new persistence APIs and new database systems. We

created a server-side binding for two object oriented (OO)

database systems, the Versant Object Database (VOD) and

db4o, as well as client-side binding for JDO and a JPA port

for JavaScript. The generic Java Orestes layer also contains

a web interface that can be used to browse the database via

the REST resource structure. We plan to use this browser

interface as a practical demonstration1 by bringing a laptop

1No particular, further requirements

allowing interested visitors to explore a running local

database instance through Orestes.

5. RESULTS
To measure the performance gain of the Orestes protocol

and our implementation, we designed a benchmark scenario.

The benchmark comprises a complex object model for a

social networking scenario, using OO concepts like

aggregation, association, generalization, etc. The

configurable transactional JDO benchmark client performs a

navigating access pattern by serially and randomly loading

objects stored in the database (either drawn from a uniform

or Zipf distribution) and writing others.

Figure 1 shows the results of one of the benchmark cases we

conducted: 50 client machines deployed in the Amazon EC2

cloud in Europe accessing a Versant database located in

California through a web-cache in Europe. The clients

perform the benchmark simultaneously, reading 450 and

writing 50 objects in three consecutive runs. For the sake of

simplicity we compare the average runtimes of the complete

benchmark for JDO over Orestes and JDO with the native

VOD TCP protocol (which uses local client caching). Even

these abridged results unmistakably show the ability of

Orestes to scale reads, reduce latency and disburden the

database.

6. FUTURE WORK
Stale objects potentially have the price of transaction aborts.

We are therefore working on the combination of an

invalidation service, integration with content delivery

networks and an algorithm that guarantees freshness of

objects using Bloom filters for compact write-log

representation.

7. REFERENCES
[1] Barish, G. and Obraczke, K. 2000. World wide web caching:

Trends and techniques. Communications Magazine, IEEE. 38,

5 (2000), 178–184.

[2] Fielding, R.T. 2000. Architectural styles and the design of

network-based software architectures. University of

California.

[3] Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo,

H., Lindsay, B.G. und Naughton, J.F. 2002. Middle-tier

database caching for e-business. Proceedings of the ACM

SIGMOD (2002), 600–611.

100 200

300 / 1

300 / 2

300 / 3

3000 / 1

3000 / 2

3000 / 3

30000 / 1

30000 / 2

30000 / 3

Time [s]
Se

tu
p

 [
#o

b
je

ct
s/

ru
n

]
VOD native
Orestes

Figure 1. Average runtime of 50 Clients simultaneously

loading 450 uniformly and randomly chosen objects out

of a given number of objects (300, 3000, 30000) in 3 runs

