Dynamic Block-level Cache Management for Cloud Computing Systems

Dulcardo Arteaga, Douglas Otstott, Dr. Ming Zhao
School of Computing and Information Sciences, Florida International University

Background Proposed Solution

m Goal: Improve I/O performance of virtual Cloud :] hared block-level = Dynamic block-level client-side caching
machines (VMs) in cloud systems using oud system using shared biock-ieve for cloud computing systems
hin network storage _ T
Caching * Exploit data locality in VM data access to
= Background = improve the performance of VMs and the
<
* Block-level network storage (iSCSI, NBD, §<§z VM Target load on shared storage system
. . . / =
SAN) is commonly used in cloud systems ® o ﬁ 8 * Utilize the increasing capacity and speed
* Fast VM migrations ! | of storage (particularly SSDs) available on
o= STORAGE SRR
* Improved data availability ' the client-side
* Scalability becomes a serious issue as the VM || M * Implement via block-level virtualization to
size of cloud systems increases ot ﬁ support different cloud storage systems
* Bottleneck in shared network storage Shared Storage * Support flexible, dynamic configuration of
e Performance interference across VMs Performance bottleneck cache replacement and write policies

System Design Proposed Approach

= Block device virtualization based

. Cloud system using dm-cache based client-side block-level caching
caching

°* DM-cache: a generic block-level disk
cache utility for storage systems

Target

* Built upon device-mapper, a framework VM 1
for creating virtual block devices on Linux

~_

* (Can be transparently plugged into an / VM 2 | @cacheé;
existing IP-SAN/SAN storage system / LT

— —

/dev/lv-disk# \
STORAGE

m Shared cache for co-hosted VMs ;
Logical Volumes:

* Create per-VM virtual caches to ;_ Host 1 LV: vmit.img
differentiate block-level I/Os from \
different VMs

N g
* Map the different virtual caches to the ~ Lo,
same physical cache device to maximize T=—_Jl M
cache utilization

Shared Storage
Performance improved

* (Can support different cache space Host 2
allocation policies

Conclusion and Future Work

Experimental Evaluation

Experiment setup:
* Eight VM hosts, each with SSD based cache; One shared iSCSI-based network storage server

m Conclusions

e DM-cache effectively uses client-side
storage to exploit locality for multiple VMs
running on the same physical host

200 190.8 12

<-Nn0-cache

M
8 e " 7 VMs no cache 1557 _. 1p | cold-cache e SSD-based results show substantial
= W7 VMs cache @ “-warm-cache performance improvements for concurrent
— @ 14 Vms no cache o 8 booting and I0zone runs
o 120 m14 VM E
= s cache =
2 5, © = Future Work
(=) = . . i
3 80 2 4 e Study intelligent algorithms for shared
= 3 — T cache space allocation while guaranteeing
40 2 fairness across all VMs
129133 107 , S e Consider the unique characteristics of SSD
0 - | 0 12 24 36 48 €0 70 84 06 devices and design optimized cache policies
write o read iy reread accordingly
operations _ _ _ _
concurrent VMs e Consider cross-client cooperative caching to
I0zone Concurrent Booting further improve caching efficiency and
14x higher throughput for reread Up to 55% faster booting better support VM migration

VIS Virtualized Infrastructure, Systems & Applications i donction tom cod ves. ENIID
A (VISA) Research Laboratory (http://visa.cis.fiu.edu) 2 couc provicer company in VPS

